

10-FZ06NBA075FU10-M304L78

target datasheet

600V / 75A
flow0 12mm housing
Schematic
╸╴╴╴╸ ╸┘┝╅ ╸

Maximum Ratings

Tj=25℃, unless otherwise specified		-			
Parameter	Symbol	Condition		Value	Unit
Input Boost IGBT					
Collector-emitter break down voltage	V _{CE}			600	V
DC collector current	I _C	T _j =T _j max	T _h =80℃ T _c =80℃	58 76	А
Repetitive peak collector current	I _{Cpulse}	t_p limited by T_j max		225	А
Power dissipation per IGBT	P _{tot}	T _j =T _j max	T _h =80℃ T _c =80℃	111 169	W
Gate-emitter peak voltage	V_{GE}			±20	v
Short circuit ratings	t _{sc} V _{cc}	T _j ≤125℃ V _{GE} =15V		10 480	μs V
Maximum Junction Temperature	T _j max			175	C
Input Boost FWD					
Peak Repetitive Reverse Voltage	V _{RRM}			600	V
DC forward current	I _F	T _j =T _j max	T _h =80℃ T _c =80℃	90	А
Repetitive peak forward current	I _{FRM}	t_p limited by T_j max		180	А
Power dissipation per Diode	P _{tot}	T _j =T _j max	T _h =80℃ T _c =80℃	100	W
Maximum Junction Temperature	T _j max			175	c

target datasheet

Maximum Ratings

Tj=25°C, unless otherwise specified				
Parameter	Symbol	Condition	Value	Unit
Thermal Properties				
Storage temperature	T _{stg}		-40+125	c
Operation temperature under switching condition	T _{op}		-40+(Tjmax - 25)	ĉ
Insulation Properties				
Insulation voltage	V _{is}	t=2s DC voltage	4000	V
Creepage distance			min 12,7	mm

Characteristic Values

Parameter	Symbol	Conditions				Value		Unit	
		V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	l _c [A] or I _F [A] or I _D [A]	T _j	Min	Тур	Max	

Input Boost IGBT										
Gate emitter threshold voltage	$V_{\text{GE(th)}}$	V _{CE} =V _{GE}			0,00025	Tj=25℃ Tj=150℃	3,5	4,5	6	V
Collector-emitter saturation voltage	V _{CE(sat)}		15		75	Tj=25℃ Tj=150℃		2,15 2,25	2,75	V
Collector-emitter cut-off current incl. Diode	I _{CES}		0	600		Tj=25℃ Tj=150℃			250	μA
Gate-emitter leakage current	I _{GES}		±20	0		Tj=25℃ Tj=150℃			400	nA
Integrated Gate resistor	R _{gint}					Tj=25℃		none		Ω
Input capacitance	C _{ies}							4000		pF
Output capacitance	C _{oss}	f=1MHz	0	30		Tj=25℃		400		-5
Reverse transfer capacitance	C _{rss}							115		р⊢
Gate charge	Q _{Gate}		15	400	75	Tj=25℃		94		nC
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness ≤50µm, λ=1W/mK						0,85		K/W
Input Boost FWD										
Diode forward voltage	V _F				70	Tj=25℃ Tj=125℃	1	2 1,5	2,7	V
Peak reverse recovery current	I _{RRM}									А
Reverse recovery time	t _{rr}									ns
Reverse recovered charge	Q _{rr}									μC
Reverse recovered energy	Erec									mWs
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness ≤50µm, λ=1W/mK						0,9		K/W
Thermistor										
Rated resistance	Room					Tj=25℃	20	22	24	kΩ

Rated resistance	R _{nom}			Tj=25℃ Tj=125℃	20 640	22 750	24 880	kΩ Ω
Power dissipation	Ρ			Tj=25℃			200	mW
Power dissipation constant	B _{25/100}					4000		К

Ordering Code and Marking - Outline - Pinout

PRODUCT STATUS DEFINITIONS

Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.
Final	Full Production	This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.