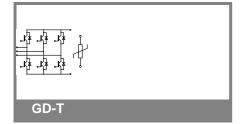


IGBT Module

SK150GD066T

Preliminary Data

Features


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications

- Inverter up to 32 kVA
- Typ. motor power 15 kW

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified							
Symbol IGBT	Conditions			Values	Units		
V _{CES}	T _j = 25 °C			600	V		
I _C	T _j = 175 °C	T _s = 25 °C		151	Α		
		$T_s = 70 ^{\circ}C$		121	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			300	Α		
V_{GES}				± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		6	μs		
Inverse Diode							
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		198	Α		
		$T_s = 70 ^{\circ}C$		152	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			200	Α		
Module							
I _{t(RMS)}					Α		
T _{vj}				-40 + 175	°C		
T _{stg}				-40 + 125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characteristics T _s = 25 °C, unless otherwise specified						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2.4$ mA		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,0076	mA
		T _j = 125 °C				mA
I_{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,8	1,1	V
		T _j = 150 °C		0,7	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4	5	mΩ
		$T_{j} = 150^{\circ}C$		6,5	7	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}				9,4		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF
C _{res}				0,3		nF
$t_{d(on)}$				95		ns
t _r	$R_{Gon} = 8 \Omega$	V _{CC} = 300V		50		ns
E _{on}	di/dt = 2400 A/μs	I _C = 150A		6,25		mJ
$t_{d(off)}$	$R_{Goff} = 8 \Omega$	T _j = 150 °C		541		ns
t _f	di/dt = 2250 A/μs	V _{GE} = -7/+15 V		70		ns
E _{off}				5,7		mJ
$R_{th(j-s)}$	per IGBT			0,55		K/W

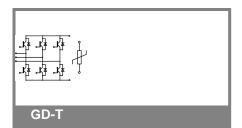
IGBT Module

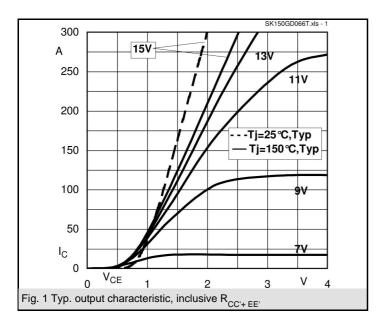
SK150GD066T

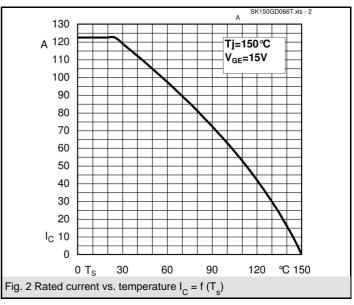
Preliminary Data

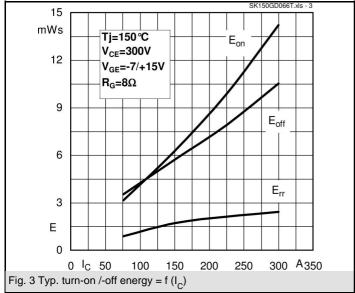
Features

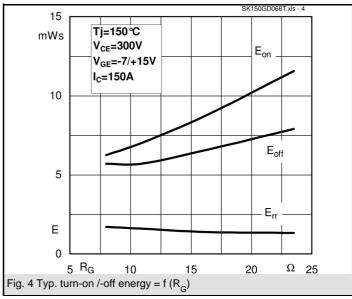
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

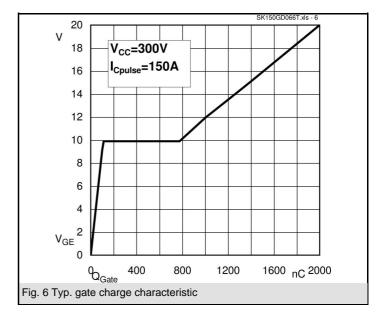

Typical Applications

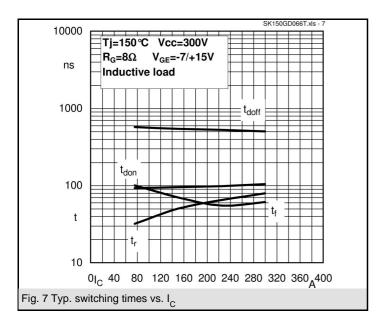

- Inverter up to 32 kVA
- Typ. motor power 15 kW

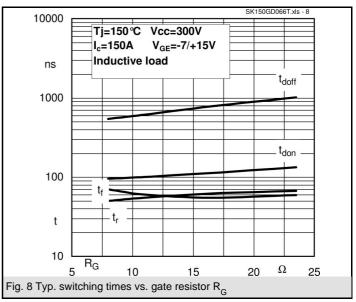

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			1,3		V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,2		V	
V_{F0}		T _j = 25 °C		0,85		V	
		T _j = 150 °C		0,9		V	
r _F		T _j = 25 °C		3		mΩ	
		T _j = 150 °C		2		mΩ	
I _{RRM}	I _F = 150 A	T _i = 150 °C		100		Α	
Q_{rr}	di/dt = 2250 A/µs	,		11		μC	
E _{rr}	V _{CC} = 300V			1,7		mJ	
R _{th(j-s)D}	per diode			0,54		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

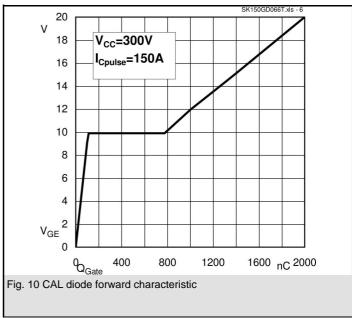

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

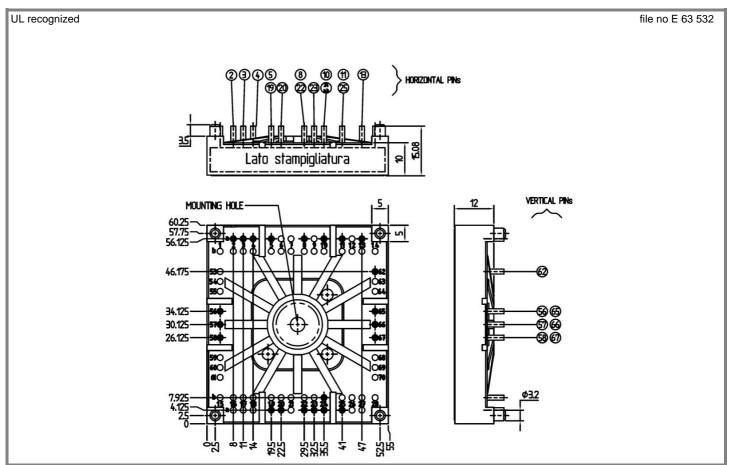

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

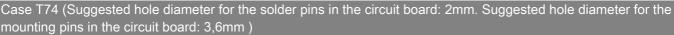


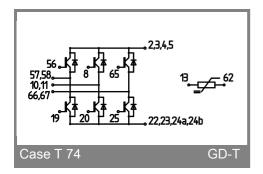












5 26-02-2009 DIL © by <u>SEMIKRON</u>