

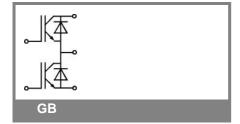
SEMITOP® 2

IGBT Module

SK50GB065

Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure
 (NPT Non Punch Through IGRT)
- (NPT-Non-Punch-Through IGBT)Low tail current with low
- temperature dependence
- Low treshold voltage

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

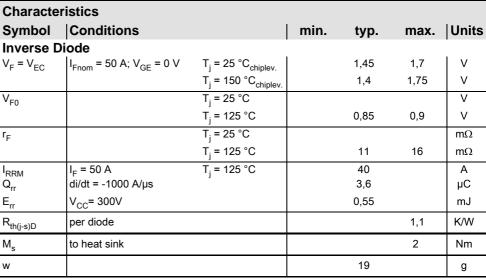
Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified									
Symbol	Conditions		Values	Units					
IGBT									
V_{CES}	T _j = 25 °C		600	V					
I _C	$T_j = 125 ^{\circ}\text{C}$ T_s	_s = 25 °C	54	Α					
	T,	s = 80 °C	40	Α					
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	Α					
V_{GES}			± 20	V					
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; T_{j} VCES < 600 V	= 125 °C	10	μs					
Inverse Diode									
I _F	,	_s = 25 °C	64	Α					
	T,	s = 80 °C	48	Α					
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			Α					
I _{FSM}	t_p = 10 ms; half sine wave T_j	= 150 °C	200	Α					
Module									
$I_{t(RMS)}$				Α					
T_{vj}			-40 + 150	°C					
T_{stg}			-40 +125	°C					
V _{isol}	AC, 1 min.		2500	V					

Characteristics T _s = 25 °C, unless otherwise specifie						
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 1.4$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0044	mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			240	nA
V _{CE0}		T _j = 25 °C		1,1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ
		T _j = 125°C		19		mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{chiplev.}$		2	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,2		V
C _{ies}				3,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
t _{d(on)}				60	80	ns
t _r	R_{Gon} = 16 Ω	$V_{CC} = 300V$		30	40	ns
E _{on}		I _C = 40A		1,1	1,4	mJ
t _{d(off)}	R_{Goff} = 16 Ω	T _j = 125 °C		220	280	ns
t _f		V _{GE} =±15V		20	26	ns
E_{off}				0,7	0,9	mJ
$R_{th(j-s)}$	per IGBT				0,85	K/W

SEMITOP A

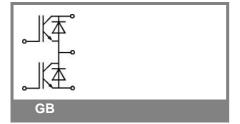
IGBT Module

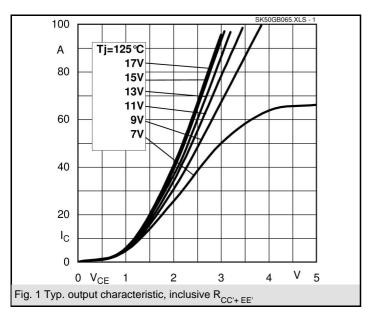
SK50GB065

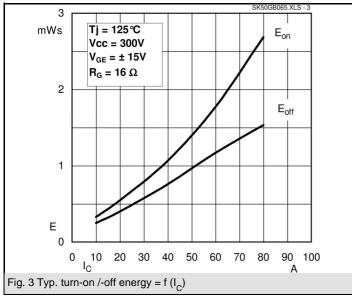

Preliminary Data

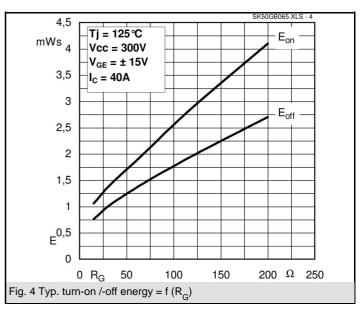
Features

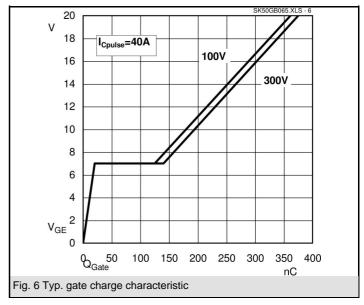
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage


Typical Applications


- Switching (not for linear use)
- Inverte
- Switched mode power supplies
- UPS




This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

