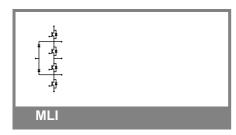


IGBT Module

SK50MLI066

Target Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technologyCAL technology FWD

Typical Applications

- 3 Level Inverter
- UPS

Remarks

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

Absolute Maximum Ratings				T _s = 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT					•		
V_{CES}	T _j = 25 °C T _j = 175 °C			600	V		
I _C	T _j = 175 °C	T _s = 25 °C		60	А		
		$T_s = 70 ^{\circ}C$		50	А		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α		
V_{GES}				± 20	٧		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C		6	μs		
Inverse	Diode						
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		56	Α		
		T _s = 70 °C		44	Α		
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			100	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		320	Α		
Freewh	eeling Diode						
I _F	T _j = 175 °C	T_s = 25 °C		56	Α		
		$T_s = 70 ^{\circ}C$		44	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		320	А		
Module							
$I_{t(RMS)}$					Α		
T _{vj}				-40 + 175	°C		
T _{stg}				-40 + 125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characte	Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.8 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0026	mA	
I_{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$,			600	nA	
V _{CE0}		T _j = 25 °C		0,9	1,1	V	
		T _j = 150 °C		0,8	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ	
		$T_j = 150$ °C		17		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,45		V	
		$T_j = 150^{\circ}C_{chiplev.}$		1,65		V	
C _{ies}				3,1		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,2		nF	
C _{res}				0,093		nF	
t _{d(on)}				30		ns	
Ţ,	$R_{Gon} = 16 \Omega$	$V_{CC} = 300V$		31		ns	
Ė _{on}		I _C = 50A		1,46		mJ	
^t d(off)	$R_{Goff} = 16 \Omega$	T _j = 150 °C		351		ns	
t _f		V _{GE} = -7/+15 V		45		ns	
E _{off}				2,02		mJ	
$R_{th(j-s)}$	per IGBT			1,11		K/W	

IGBT Module

SK50MLI066

Target Data

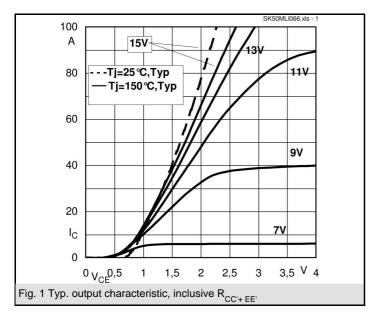
Features

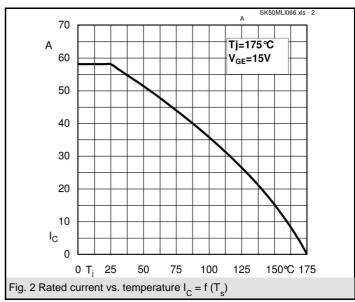
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD

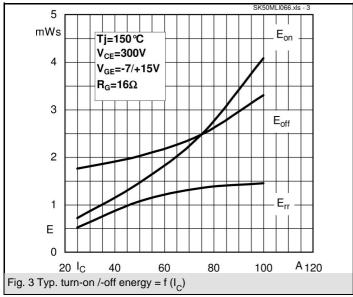
Typical Applications

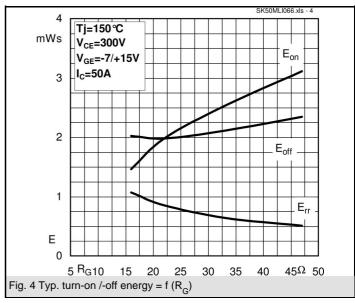
- 3 Level Inverter
- UPS

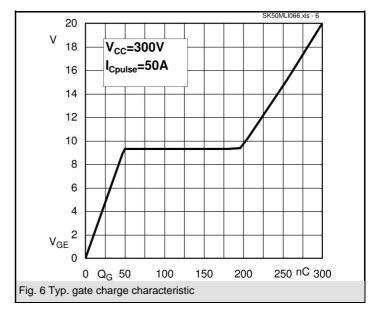
Remarks

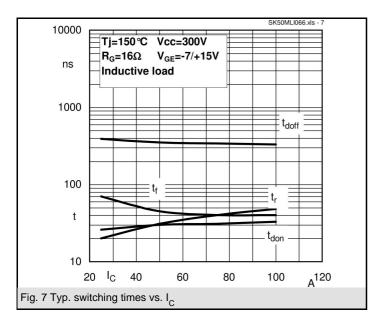

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

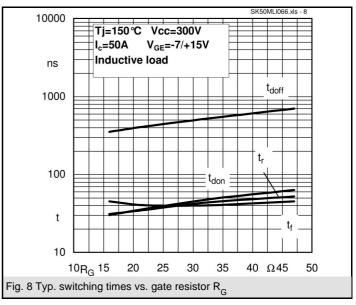

Character	ristics							
Symbol	Conditions		min. ty	o. max.	Units			
Inverse Diode (Antiparallel Diode)								
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}	1,5	i	V			
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$	1,5	i	V			
V _{F0}		T _j = 25 °C	1		V			
		T _j = 150 °C	0,9	ı	V			
r _F		T _j = 25 °C	10		mΩ			
		T _j = 150 °C T _j = 150 °C	12		mΩ			
I _{RRM}	I _F = 50 A	T _j = 150 °C			Α			
Q_{rr}					μC			
E _{rr}	V _R = 300V		1,0	7	mJ			
$R_{th(j-s)D}$	per diode		1,7		K/W			
	ling Diode (Neutral (Clampo diode)						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$	1,5	i	V			
		$T_j = 150 ^{\circ}C_{chiplev.}$	1,5	i	V			
V _{F0}		T _j = 25 °C	1		V			
		T _j = 150 °C	0,9	ı	V			
r _F		T _j = 25 °C	10		V			
		T _j = 150 °C T _j = 150 °C	12		V			
I _{RRM}	I _F = 50 A	T _j = 150 °C	40		Α			
Q_{rr}	di/dt = -2670 A/μs		2,2		μC			
E _{rr}	V _R =300V		1,0	7	mJ			
R _{th(j-s)FD}	per diode		1,7		K/W			
M_s	to heat sink		2,25	2,5	Nm			
w			30		g			

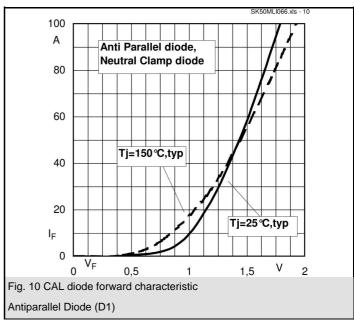

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

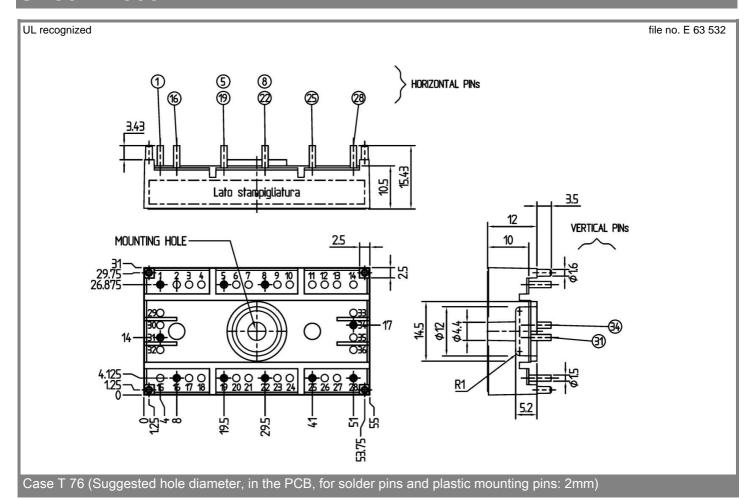

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

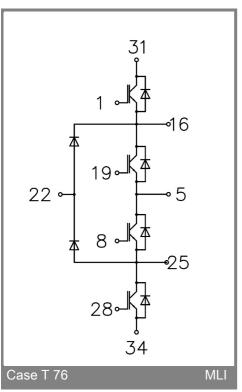












4 26-02-2009 DIL © by SEMIKRON

