

SEMITOP[®] 3

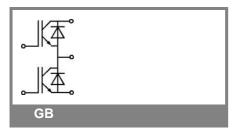
IGBT Module

SK60GB125

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology


V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified					
Symbol	_		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	51	А	
		T _s = 80 °C	35	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А	
V _{GES}			± 20	V	
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 300 \; V; \; V_{GE} \leq 20 \; V; \\ V_{CES} < 600 \; V \end{array}$	T _j = 125 °C	10	μs	
Inverse D					
I _F	T _j = 150 °C	T _s = 25 °C	57	Α	
		T _s = 80 °C	38	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А	
I _{FSM}	$t_p = 10 \text{ ms}; \text{ half sine wave}$	T _j = 150 °C	550	А	
Module				_	
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,006	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA	
V _{CE0}		T _j = 25 °C		1,4	1,9	V	
		T _j = 125 °C		1,7	2,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ	
		T _j = 125°C		43		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		3,2	3,7	V	
		T _j = 125°C _{chiplev.}		3,85		V	
C _{ies}				3,3		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,5		nF	
C _{res}				0,22		nF	
t _{d(on)}				80		ns	
t,	R_{Gon} = 33 Ω	V _{CC} = 600V		65		ns	
Eon		I _C = 45A		8,36		mJ	
t _{d(off)}	R_{Goff} = 33 Ω	T _j = 125 °C		539		ns	
t _f		V _{GE} =±15V		22		ns	
E _{off}				3,32		mJ	
R _{th(j-s)}	per IGBT				0,6	K/W	

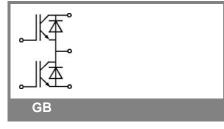
SEMITOP[®] 3

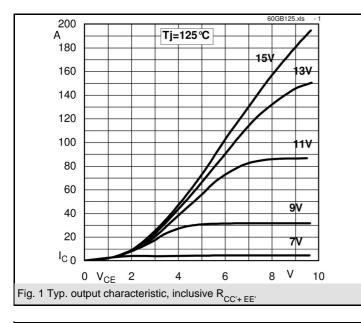
IGBT Module

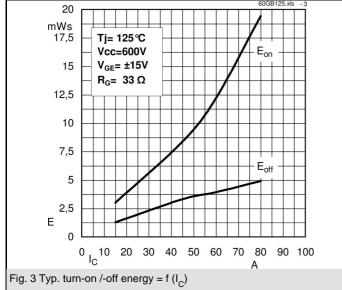
Preliminary Data

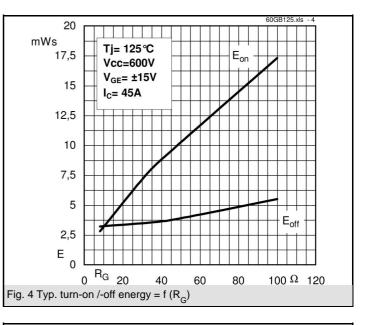
Features

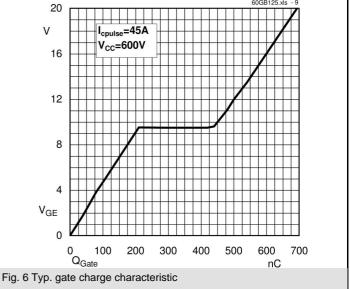
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient


Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	ode					•
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 25 °C				V
		T _j = 125 °C		1	1,2	V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C		16	22	mΩ
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		А
Q _{rr}	di/dt = -800 A/µs	,		8		μC
E _{rr}	V _{CC} = 600V			2		mJ
R _{th(j-s)D}	per diode				0,9	K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

