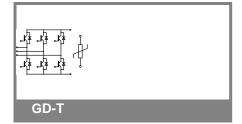


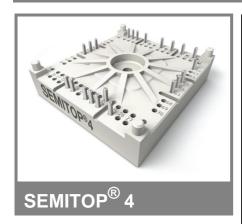
IGBT Module

SK75GD126T

Preliminary Data

Features


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications

- Inverter up to 42 kVA
- Typ. motor power 18,5 kW

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT							
V_{CES}	T _j = 25 °C		1200	V			
I _C	T _j = 150 °C	T _s = 25 °C	88	Α			
		$T_s = 70 ^{\circ}C$	67	Α			
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		140	Α			
V_{GES}			± 20	V			
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs			
Inverse Diode							
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	91	Α			
		$T_s = 70 ^{\circ}C$	68	Α			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		150	Α			
Module							
I _{t(RMS)}				Α			
T_{vj}		<u> </u>	-40 + 150	°C			
T _{stg}			-40 + 125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 3 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0094	mA
		T _j = 125 °C				mA
I_{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10	13	mΩ
		T _j = 125°C		16	19	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,1	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,4	V
C _{ies}				5		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,26		nF
C _{res}				0,23		nF
$t_{d(on)}$				62		ns
t _r	R_{Gon} = 8,2 Ω	$V_{CC} = 600V$		32		ns
E _{on}	di/dt = 1340 A/μs	I _C = 75A		11,3		mJ
t _{d(off)}	$R_{Goff} = 8.2 \Omega$	T _j = 125 °C		514		ns
t _f	di/dt = 1340 A/µs	V _{GE} = -7/+15 V		90		ns
E_{off}				10		mJ
$R_{th(j-s)}$	per IGBT			0,5		K/W

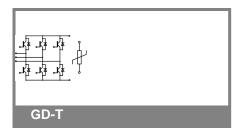
IGBT Module

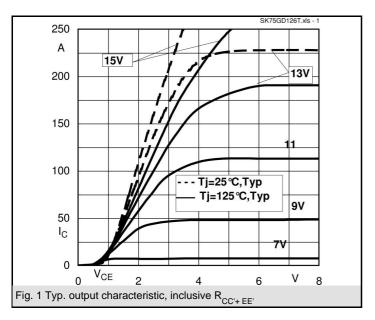
SK75GD126T

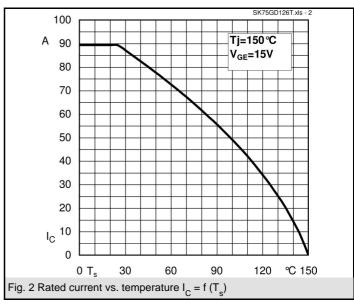
Preliminary Data

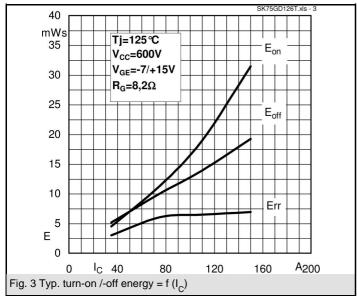
Features

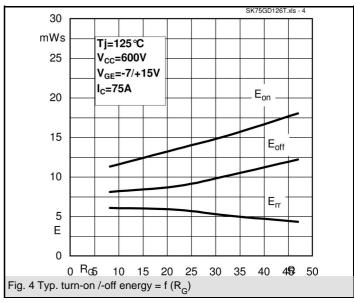
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- · CAL technology FWD
- Integrated NTC temperature sensor

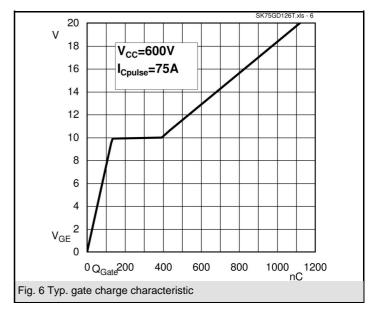

Typical Applications

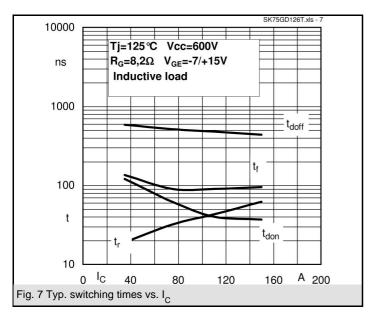

- Inverter up to 42 kVA
- Typ. motor power 18,5 kW

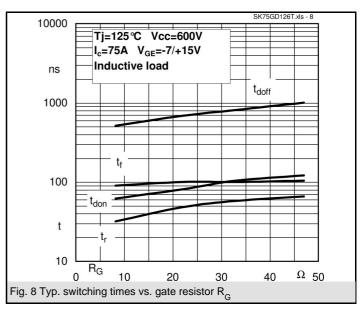

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D							
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,46		V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4		V	
V_{F0}		T _j = 25 °C		1,05		V	
		T _j = 125 °C		0,95		V	
r _F		T _j = 25 °C		5,5		mΩ	
		T _j = 125 °C		6		mΩ	
I _{RRM}	I _F = 75 A	T _j = 125 °C		70		Α	
Q_{rr}	di/dt = 1340 A/µs	·		20		μC	
E _{rr}	V _{CC} = 600V			6		mJ	
$R_{th(j-s)D}$	per diode			0,7		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	

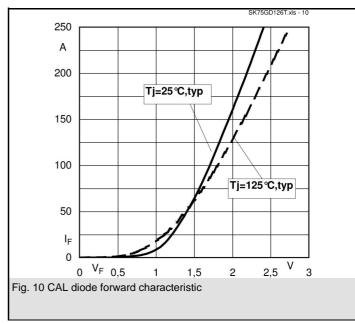

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

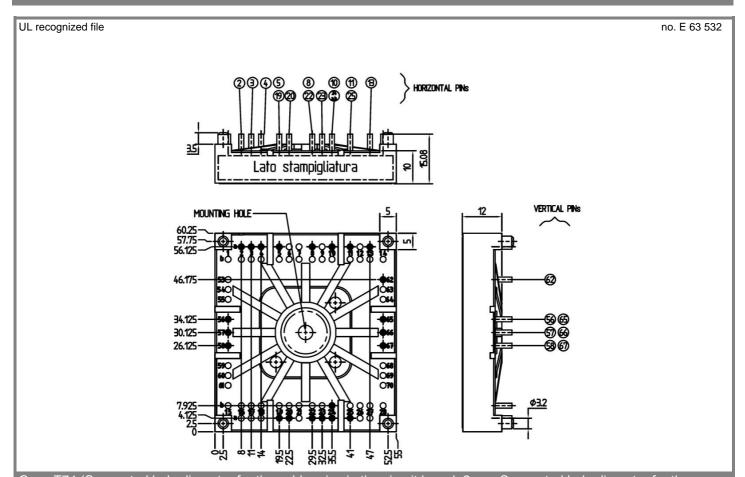

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

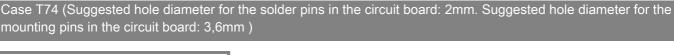


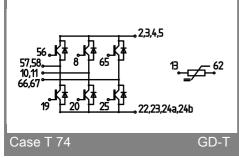












4 27-08-2008 DIL © by SEMIKRON

5 27-08-2008 DIL © by <u>SEMIKRON</u>