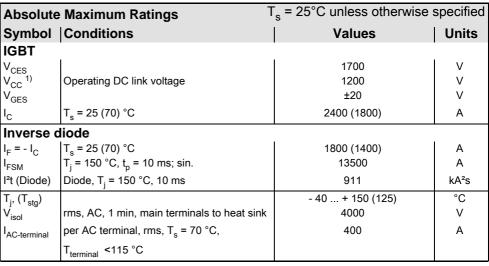
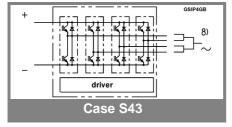

SKiiP 2403GB172-4DW V3

2-pack-integrated

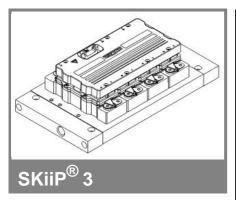

intelligent Power System

Power section SKiiP 2403GB172-4DW V3


Preliminary Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics			T _s = 25°C unless otherwise specified				
Symbol		ions			min.	typ.	max.	Units
IGBT						-7		
V _{CEsat}	I _C = 1200 measured at	A, T _j = 25 terminal	(125) °C;			1,9 (2,2)	2,4	V
V _{CEO} r _{CE} l _{CES}	$T_i = 25 (1$	25) °C; at t 25) °C; at t /, V _{CE} = V _C	erminal			1 (0,9) 0,8 (1) 4,8 (288)	1,2 (1,1) 1 (1,3)	V mΩ mA
E _{on} + E _{off}	$T_j = 25 (1 I_C = 1200$		000 V			780 1150		mJ mJ
R _{CC+EE} , L _{CE}	terminal o	chip, T _j = 25				0,13 3 4		mΩ nH nF
C _{CHC}	1	e, AC-side				4		111
Inverse of V _F = V _{EC}		A, T _j = 25 (terminal	(125) °C			2 (1,8)	2,15	V
V _{TO} r _T E _{rr}	-	25) °C 25) °C A, V _{CC} = 9 °C, V _{CC} = 1				1,1 (0,8) 0,8 (0,8) 144 171	1,2 (0,9) 0,8 (0,9)	V mΩ mJ mJ
Mechani	cal data							
M _{dc} M _{ac} w	AC termir	nals, SI Uni nals, SI Uni System w/c	ts		6 13	3,1	8 15	Nm Nm kg
w	heat sink					6,2		kg
						c.); "s" re (acc. IEC		
$R_{th(j-s)l}$	per IGBT						0,013	K/W
$R_{th(j-s)D}$	per diode						0,025	K/W
Z _{th}	R _i (mK/W	') (max. valı				tau		
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$ $Z_{th(j-r)D}$	1,2 2	5 3	5,8 13,5	0 13,5	69 50	0,35 5	0,02 0,25	1 0,04
$Z_{th(r-a)}$	2,7	4,6	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

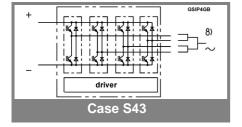
SKiiP 2403GB172-4DW V3

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 2403GB172-4DW V3

Preliminary Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlick of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56

Absolute	Maximum Ratings	_a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	7	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	7	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 13V - 30V	298+58*f/kHz+0,000105*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,4		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,4		μs
$t_{pERRRESET}$	error memory reset time		12,2		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		2500		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not implemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

