

1700V, 4.6A, 0.8Ω

Silicon Carbide N-Channel Power MOSFET

FEATURES

- · Fast switching with low EMI/RFI
- · Low Switching Energy
- Low R_{DS(on)} Temperature Coefficient For Improved Efficiency
- Ultra Low Gate Resistance
- RoHS compliant

TYPICAL APPLICATIONS

- · PFC and other boost converter
- · Buck converter
- Two switch forward (asymmetrical bridge)
- · Single switch forward
- Flyback
- Inverters

Maximum Ratings

Symbol	Parameter	Ratings	Unit	
V _{DSS}	Drain Source Voltage	1700	V	
,	Continuous Drain Current @ T _C = 25°C	4.6		
I _D	Continuous Drain Current @ T _c = 100°C	3.3	Α	
I _{DM}	Pulsed Drain Current ^①	9.2		
V _{GS}	Gate-Source Voltage	-10 to +25	V	
P _D	Total Power Dissipation @ T _c = 25°C	52	W	
	Linear Derating Factor	0.35	W/°C	

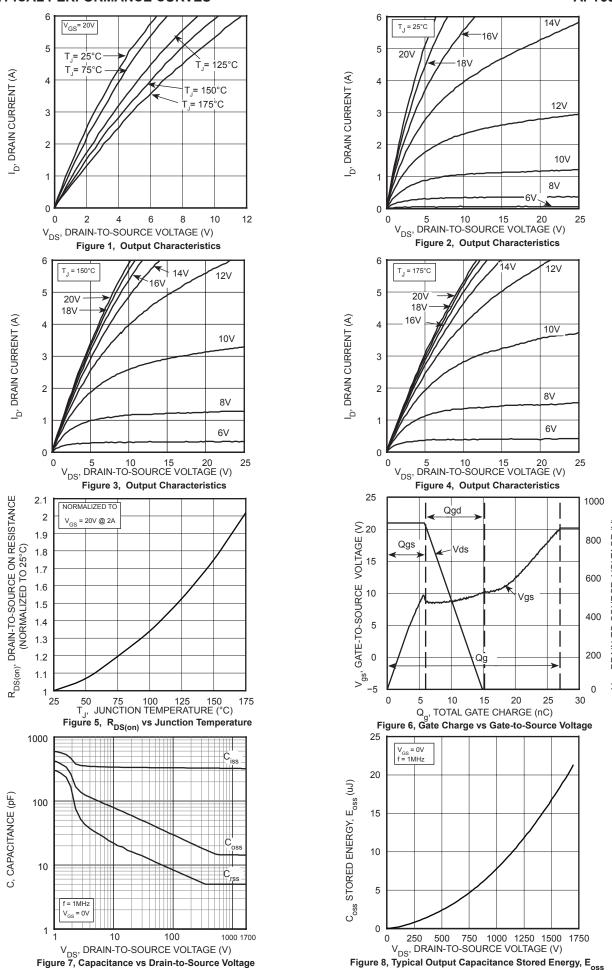
Thermal and Mechanical Characteristics

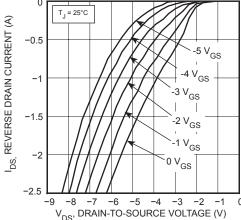
Symbol	Characteristic	Min	Тур	Max	Unit
$R_{\theta^{ m JC}}$	Junction to Case Thermal Resistance		2.4	2.9	°C/W
T_J,T_STG	Operating and Storage Junction Temperature Range	-55		175) C
T_L	Soldering Temperature for 10 Seconds (1.6mm from case)			260	

Static Characteristics

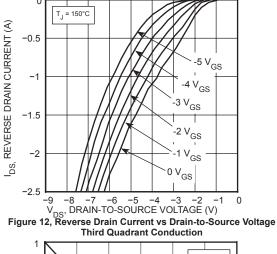
$T_J = 25$ °C unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 100\mu A$		1700			V
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 100μA			0.68		V/°C
R _{DS(on)}	Drain-Source On Resistance®	V _{GS} = 20V, I _D = 2A			0.8	1.2	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 500 \mu A$		1.8	3.2		V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-6.8		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 1700V$ $T_{J} = 25^{\circ}C$ $T_{J} = 150^{\circ}C$			100	μA	
DSS			T _J = 150°C			250	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = +20V / -10V				±100	nA
ESR	Equivalent Series Resistance	f = 1MHz, 25mV, Drain Short			1.30		Ω


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input Capacitance	V = 0V V = 1000V		325	İ	
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DD} = 1000V$ $f = 1MHz$		5		pF
C_{oss}	Output Capacitance	I = IIVIDZ		15		1
E _{oss}	Output Capacitance Stored Energy	V _{GS} = 0V, V _{DD} = 1000V		8		μJ
$C_{o(er)}$	Effective Output Capacitance	f = 1MHz		16		pF
Q_g	Total Gate Charge	V _{GS} = -5/20V		29		nC
Q_{gs}	Gate-Source Charge	V _{DD} = 850V		7		
Q_{gd}	Gate-Drain Charge	I _D = 2A		9		
t _{d(on)}	Turn-On Delay Time	V _{DD} = 850V		4		ns - ns
t,	Current Rise Time	$V_{DD} = 030V$ $V_{GS} = 0/20V$		1		
$t_{d(off)}$	Turn-Off Delay Time	I _D = 2A		7		
t,	Current Fall Time	$R_{\rm g}$ = 2.5 Ω $^{\odot}$		95		
E _{on2}	Turn-On Switching Energy	L = 115 μH		90		
E _{off}	Turn-Off Switching Energy	$T_c = 25^{\circ}C$		30		
t _{d(on)}	Turn-On Delay Time	V _{DD} = 850		3		ns
t,	Current Rise Time	$V_{GS} = 0/20V$ $I_{D} = 2A$		1		
$t_{d(off)}$	Turn-Off Delay Time			8		
t _f	Current Fall Time	$R_{_{\rm G}}$ = 2.5 Ω ^③		95		
E _{on2}	Turn-On Switching Energy	L = 115 μH		90		
E _{off}	Turn-Off Switching Energy	$T_{c} = 150^{\circ}C$		32		μJ


Source-Drain Diode Characteristics

T_J = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{SD}	Diode Forward Voltage	I _{SD} = 1A, V _{GS} = 0V		3.7		V
T _{rr}	Reverse Recovery Time	I _{SD} = 2A, V _{DD} = 850V dl/dt = -1200A/μs		30		ns
Q _{rr}	Reverse Recovery Charge			55		nC
I _{rrm}	Reverse Recovery Current			-3.5		А

- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Pulse test: Pulse Width < $380\mu s$, duty cycle < 2%.

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Reverse Drain Current vs Drain-to-Source Voltage **Third Quadrant Conduction**

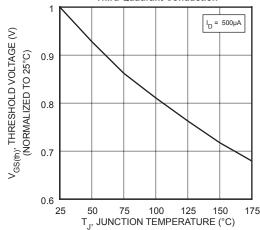
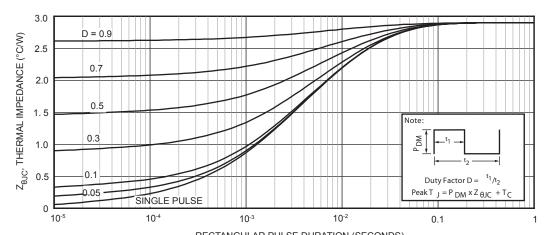
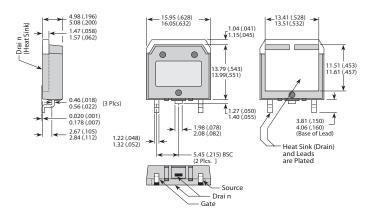




Figure 14, Threshold Voltage vs Temperature

RECTANGULAR PULSE DURATION (SECONDS)
Figure 16, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

D³PAK (S) Package Outline

Dimensions in Millimeters (Inches)

Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/terms-a-conditions.