

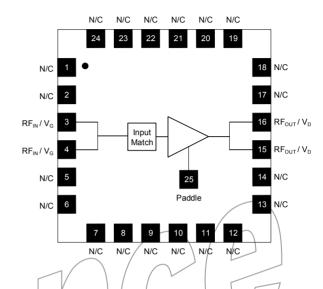
Advance - Rev. V1A

Features

- GaN on Si HEMT D-Mode Transistor
- Suitable for linear and saturated applications
- Tunable from DC 6 GHz
- 28 V Operation
- >10 dB Gain at 5.3 GHz
- >50 % Drain Efficiency at 5.3 GHz
- 100 % RF Tested
- Lead-Free 4 mm 24-Lead PQFN Package
- ROHS* Compliant and 260°C reflow compatible

Description

The MAGX-011086 GaN HEMT is a wideband transistor optimized for DC - 6 GHz operation in a user friendly package ideal for high bandwidth applications. The device has been designed for saturated and linear operation with output power levels of 5 W (37 dBm) in an industry standard, low inductance, lead-free 4 mm 24-lead PQFN plastic package. The pads of the package form a coplanar launch that naturally absorbs lead parasitics and features a small PCB outline for space constrained applications.


The MAGX-011086 is ideally suited for Wireless LAN, High Dynamic Range LNA's broadband general purpose, land mobile radio, defense communications, wireless infrastructure, and ISM applications.

Built using the SIGANTIC® process - a proprietary GaN-on-Silicon technology.

Ordering Information

Part Number	Package	
MAGX-011086	bulk quantity	

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Function
1	N/C	No Connection
2	N/C	No Connection
3	RF_{OUT}/V_D	RF Output / Drain
4	RF _{OUT} / V _D	RF Output / Drain
5 - 14	N/C	No Connection
15	RF _{IN} / V _G	RF Input / Gate
16	RF _{IN} / V _G	RF Input / Gate
17 - 24	N/C	No Connection
25	Pad ¹	Ground / Source

The exposed pad centered on the package bottom must be connected to RF and DC ground and provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Advance - Rev. V1A

Electrical RF Specifications: $V_{DS} = +28 \text{ V}$, $I_{DQ} = 50 \text{ mA}$, $T_C = +25^{\circ}\text{C}$ (unless Noted)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 2.5 GHz CW, 5.3 GHz	G _{SS}	_	16.0 10.5	_	dB
Power Gain	5.3 GHz, P _{OUT} = 4 W	G _P	_	9.5	_	dB
Saturated Output Power	CW, 2.5 GHz CW, 5.3 GHz	P _{SAT}	_	37 37	_	dBm
Drain Efficiency at Saturation	CW, 2.5 GHz CW, 5.3 GHz	η _{DSAT}	_	63 52	_	%
Drain Efficiency	5.3 GHz, P _{OUT} = 4 W	η	_	45	_	%
Ruggedness	Output Mismatch, all phase angles	Ψ	15:1, N	o Device	amage	VSWR

Electrical DC Specifications: $T_A = +25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Off Characteristics						
Leakage Current - Drain Source	V _{GS} = -8 V, V _{DS} = 100 V	I _{DLK}	_	2	_	mA
Leakage Current - Gate Source	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GLK}		1	_	V
On Characteristics						
Gate Threshold Voltage	V_{DS} = 48 V, I_{D} = 2 mA	V _T	-	-1.5	-	V
Gate Quiescent Voltage	$V_{DS} = 48 \text{ V}, I_{D} = 50 \text{ mA}$	V_{GSQ}	-	-1.2	-	V
On Resistance	V _{DS} = 2 V, I _D = 15 mA	R _{ON}	-	2.0	-	Ω
Maximum Drain Current	V _{DS} = 7 V, Pulse Width 300 μS, 0.2% Duty Cycle	I _D , _{MAX} .	-	1.4	-	А

Thermal Characteristics²:

Parameter	Test Conditions	Typical	Units
Thermal Resistance (R _{qJC})	V _{DS} = 48 V, T _J = 200°C	17	°C/W

 $^{2. \ \ \}text{Junction temperature } (T_J) \ \text{measured using IR Microscopy}. \ \ \text{Case temperature measured using thermocouple embedded in heat-sink}.$

Advance - Rev. V1A

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Max.
Drain Source Voltage, V _{DS}	100 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	4 mA
Power Dissipation, P _T	10.3 W
Junction Case Temperature	+200°C
Operating Temperature	-40°C to +100°C
Storage Temperature	-65°C to +150°C

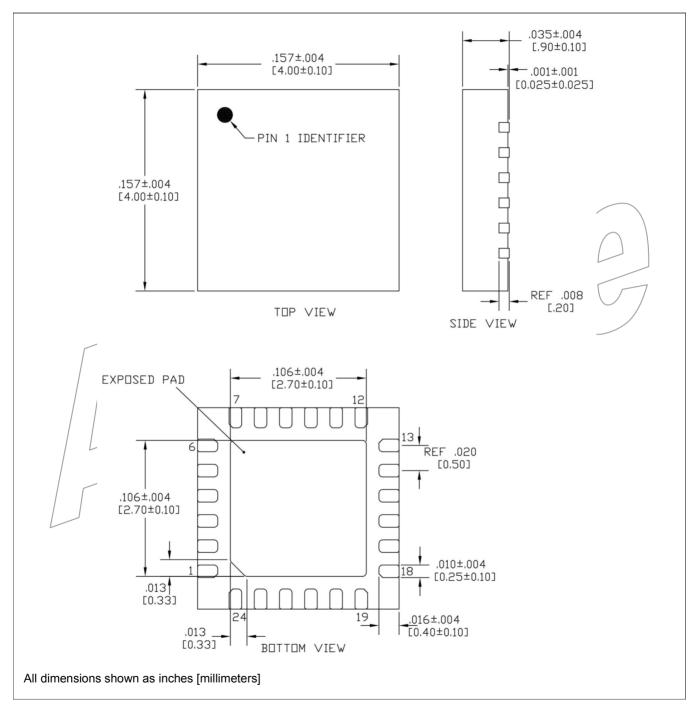
3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

5. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10⁶ hours.

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Advance - Rev. V1A

Lead-Free 4 mm 24-Lead PQFN[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is 100% matte tin over copper.

4

ADVANCE: Data Sheets contain information regarding a product MACOM is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.