DATA SHEET

NEM090853P-28

N-CHANNEL SILICON POWER LDMOS FET FOR UHF-BAND POWER AMPLIFIER

DESCRIPTION

The NEM090853P-28 is an N-channel enhancement-mode lateral MOS FET designed for 0.8 to 1.0 GHz, 90 W single-end power amplifier applications, such as, GSM/EDGE/N-CDMA cellular base station. Dies are manufactured using our NEWMOS technology (our WSi gate lateral MOS FET), and its nitride surface passivation and triple layer aluminum silicon metalization offer a high degree of reliability.

FEATURES

High 1 dB compression output power: Po (1 dB) = 90 W TYP. (VDS = 28 V, IDset = 800 mA, f = 920 to 960 MHz CW)

High linear gain
 : G_L = 19.5 dB TYP. (V_{DS} = 28 V, I_{Dset} = 800 mA, f = 920 to 960 MHz CW)

• High drain efficiency : $\eta_{\rm d}$ = 57% TYP. (V_{DS} = 28 V, I_{Dset} = 800 mA, f = 920 to 960 MHz CW)

• Low intermodulation distortion : IM₃ = -37 dBc TYP. (V_{DS} = 28 V, I_{Dset} = 800 mA, f = 960/960.1 MHz,

 $P_{out} = 43 \text{ dBm } (2 \text{ tones})$

: $IM_3 = -45 \text{ dBc TYP}$. (VDS = 28 V, $ID_{Set} = 800 \text{ mA}$, f = 880/880.1 MHz,

Pout = 40 dBm (2 tones))

- · Internal matched (Input and Output) for ease of use
- · Low cost hollow plastic packages
- 100% screening
- · Integrated ESD protection
- · Effective prevention against humidity
- Excellent stability against HCI (Hot Carrier Injection)

APPLICATION

Digital cellular base station PA: GSM/EDGE/N-CDMA etc.

ORDERING INFORMATION

Part Number	Package	Supplying Form		
NEM090853P-28 T-97M (3P)		ESD protective envelope		

Remark To order evaluation samples, contact your nearby sales office.

The unit sample quantity is 1 pcs.

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

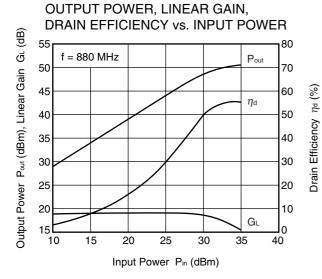
ABSOLUTE MAXIMUM RATINGS (Ta = +25°C, unless otherwise specified)

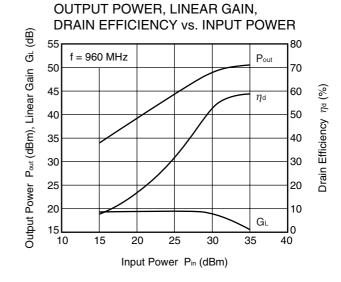
Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	VDS	65	V
Gate to Source Voltage	V _{GS}	7	٧
Drain Current	lь	10.0	Α
Total Device Dissipation	Ptot Note	250	W
Thermal Resistance	Rth	0.7	°C/W
Channel Temperature	Tch	200	°C
Storage Temperature	T _{stg}	-65 to +150	°C

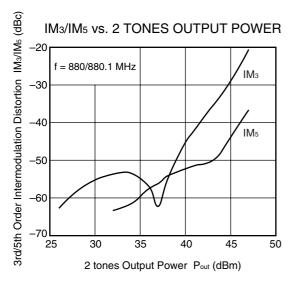
Note $Tc = 25 \, ^{\circ}C$

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS	ı	28	30	V
Gate to Source Voltage	V _{GS}	1.5	1.9	2.5	٧
Input Power	Pin	-	32	36	dBm

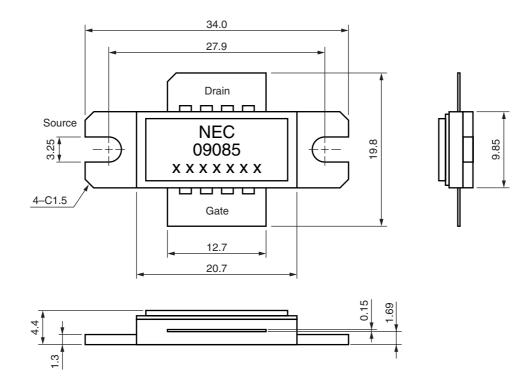

ELECTRICAL CHARACTERISTICS (TA = +25°C)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igss	V _{GSS} = 5V	-	-	1	μΑ
Drain to Source Leakage Current (Zero Gate Voltage Drain Current)	Ipss	V _{DSS} = 65 V	ı	ı	1	mA
Gate Threshold Voltage	V_{th}	V _{DS} = 10 V, I _{DS} = 1 mA	1.0	1.4	2.0	V
Transconductance	gm	$V_{DS} = 20 \text{ V}, \text{ lbs} = 2 \text{ A} \pm 100 \text{ mA}$	ı	4.8	_	S
Drain to Source Breakdown Voltage	BV _{DSS}	$loss = 10 \mu A$	65	75	-	٧
Gain 1 dB Compression Output Power	Po (1 dB)	f = 920 to 960 MHz, Pin = 32 dBm,	1	49.5	-	dBm
Linear Gain	GL Note	V _{DS} = 28 V, I _{Dset} = 800 mA	18.5	19.5	-	dB
Output Power	Pout		49.3	50	-	dBm
Drain Efficiency	$\eta_{ extsf{d}}$		50	57	-	%
Power Added Efficiency	η add		_	56	-	%
3rd Order Intermodulation Distortion	IMз	f = 960/960.1 MHz, V _{DS} = 28 V, I _{Dset} = 800 mA, 2 tones P _{out} = 43 dBm	-	-37	-	dBc
Gain 1 dB Compression Output Power	Po (1 dB)	f = 880 MHz, Pin = 32 dBm,	_	49.5	-	dBm
Linear Gain	GL ^{Note}	V _{DS} = 28 V, I _{Dset} = 800 mA	_	19.0	-	dB
Output Power	Pout		-	50	-	dBm
Drain Efficiency	$\eta_{ extsf{d}}$			57	_	%
Power Added Efficiency	η add		ı	56	_	%
3rd Order Intermodulation Distortion	IMз	f = 880/880.1 MHz, V _{DS} = 28 V, I _{Dset} = 800 mA, 2 tones P _{out} = 40 dBm	-	-45	-	dBc


Note Pin = 22 dBm

3

TYPICAL CHARACTERISTICS (TA = +25°C, VDS = 28 V, IDset = 800 mA, unless otherwise specified)



Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

T-97M (3P) (UNIT: mm)

5

RECOMMENDED MOUNTING CONDITIONS FOR CORRECT USE

- (1) Fix to a heat sink or mount surface completely with screws at the two holes of the flange.
- (2) The recommended torque strength of the screws is 29.4 N·cm typical using M3 type screws.
- (3) The recommended flatness of the mount surface is less than $\pm 10~\mu m$ (roughness of surface is $\nabla \nabla \nabla$).

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Partial Heating	Peak temperature (pin temperature) Soldering time (per pin of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350-P3

Caution Do not use different soldering methods together (except for partial heating).

6

- The information in this document is current as of April, 2004. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

NEC NEM090853P-28

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical)

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279