

Applications

LTE Compatible Applications

Product Features

- Small 10-pin 3 x 3 mm Module
- Integrated High Performance Coupler
- Built-in Vreg Functionality Eliminates the Need For External Components
- Low Quiescent Current Provides Long Talk-Time
- High Linearity
- TriQuint's GaAs BiHEMT / CuFlip® PA Technology
- Optimized for 50 Ω system
- Lead-free 260 °C / RoHS / Halogen-free

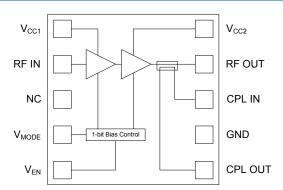
Electrical Specifications

Parameter	Тур.	Units
Max P _{OUT}	27.5	dBm
E-UTRA ACLR	-40	dBc
UTRA ACLR1	-40	dBc
UTRA ACLR2	-60	dBc
LPM I _{CQ}	11	mA
Max. Power Current	430	mA
Rx Noise	-130	dBm/Hz

Note: Typical performance for LTE

 $V_{CC1} = V_{CC2} = +3.4 \text{ VDC}, V_{EN} = \text{"High"}, T_C = 25 \text{ °C}$

General Description


The TQM700017 is fully matched Power Amplifier Module designed for use in LTE handsets. Its compact 3x3mm package (including coupler) makes it ideal for today's extremely small data enabled phones. Its RF performance meets the stringent linearity requirements of LTE operation.

The TQM700017 is designed on TriQuint's GaAs BiHEMT technology with CuFlip® assembly offering state of the art reliability, temperature stability and ruggedness. The module includes built-in regulator functionality as well as a high performance coupler for maximum integration and space savings.

10 Pin 3 x 3 mm Leadless SMT Package

Functional Block Diagram

Pin Configuration

Pin No.	Label
1	V _{CC1}
2	RF IN
3 4	NC
	V _{MODE}
5	V _{EN}
6	CPL OUT
7	GND
8	CPL IN
9	RF IN
10	V _{CC1}
Backside Pad	RF/DC Ground

Ordering Information

Part No.	Description
TQM700017	Band 17 LTE PAM

Standard T/R size = 2500 pieces on a 7" reel

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−30 to 150 °C
RF Input Power, CW, 50Ω, T=25°C	+10 dBm
Supply Voltage (V _{CC1} , V _{CC2})	+4.5 V
Control Voltage (V _{EN} , V _{MODE})	+4.2 V

Operation of this device outside the parameter ranges given above may cause permanent damage. Exposure exceeding absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum conditions are not guaranteed if multiple are applied at the same time.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Supply Voltage (V _{DD})	+3.2	-	+4.2	V
V _{EN} "Low"	0.0	-	+0.5	V
V _{EN} "High"	+1.35	+1.8	+3.1	V
V _{MODE} "Low"	0.0	-	+0.5	V
V _{MODE} "High"	+1.35	+1.8	+3.1	V
T _{CASE}	-20		+90	°C

Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: LTE 10 MHz QPSK 12 RB, RBstart = 0, Temp.=+25 °C, V_{CC1} = V_{CC2} = +3.4 V

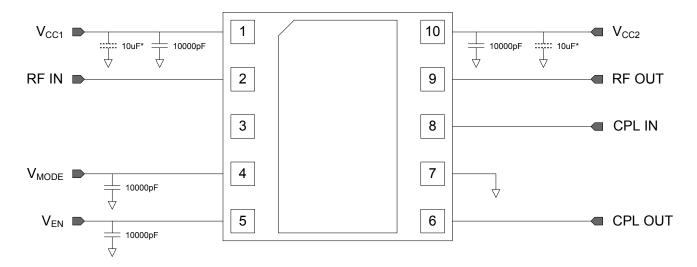
Parameter	Conditions	Min	Тур	Max	Units	
Frequency Range		704	-	716	MHz	
PA Enable Current		-	-	0.1	mA	
Mode Control Current			-	-	0.1	mA
Leakage Current ²			-	10	-	μA
Turn on/off time	DC: I _{CC} to within 90% of final va	alue	-	-	20	110
Turri on/on time	RF: P _{OUT} within 1 dB of final va	ue	-	-	6	μs
Quiescent Current	LPM		-	11	-	mA
Maximum P _{OUT}	HPM, Worst case LTE MPR=0	dB	27.5	-	-	dBm
WIAXIIIIUIII F _{OUT}	LPM, Worse case LTE MPR=0	dB	16.0	-	-	UDIII
Supply Current	HPM, $P_{OUT} = P_{MAX}$		350	430	475	mA
Supply Current	LPM, $P_{OUT} = +16 dBm$		35	55	75	IIIA
Gain	$ HPM (P_{OUT} \leq P_{MAX}) $		28.5	31	34.5	dB
Gaiii	LPM ($P_{OUT} \le +16 dBm$)		16.5	19	21.5	ub
PAE	$HPM (P_{OUT} \le +27.5 dBm)$		34.8	38.5	47.3	%
	LPM ($P_{OUT} \le +16 dBm$)		15.6	21.3	33.5	
LTE Gain Variation	All modes		-	-	±0.25	dB
Gain Linearity	All modes		-	±1.0	-	dB
	LTE E-UTRA _{ACLR} , P _{OUT} ≤ (P _{MAX}	LTE E-UTRA _{ACLR} , P _{OUT} ≤ (P _{MAX} – MPR)		-	-33	
ACLR	LTE UTRA _{ACLR1} , ±7.5 MHz, P _{OI}	$_{JT} \le (P_{MAX} - MPR)$	-	-	-36	dBc
	LTE UTRA _{ACLR2} , ±12.5 MHz, P	$_{\text{OUT}} \leq (P_{\text{MAX}} - \text{MPR})$	-	-	-39	
EVM	$P_{OUT} \le (P_{MAX} - MPR)$	$P_{OUT} \le (P_{MAX} - MPR)$		-	5	% rms
Harmonic Suppression	P _{OUT} ≤ P _{MAX} , 1 MHz BW	H2	-	-	-35	dBc
namonic suppression	FOUT > PMAX, I IVINZ BVV	H3+	-	-	-50	ubc
Rx Band Noise	+30 MHz offset from Tx, 10 MHz, QPSK, RB ≤ 20, RB start = 50 - # of RBs		-	-	-122	dBm/Hz
ISM Noise	2400 – 2483.5 MHz		-	-	-143	dBm/Hz
GPS Noise	1574 – 1577 MHz		-	-	-140	dBm/Hz

Datasheet: Rev. J 4/29/14 © 2014 TriQuint

- 2 of 10 - Disclaimer: Subject to change without notice www.triquint.com

Electrical Specifications (contd.)

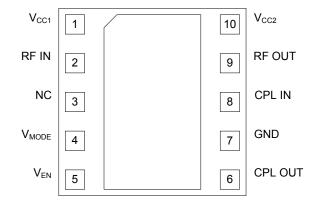
Test conditions unless otherwise noted: LTE 10 MHz QPSK 12 RB, RBstart = 0, +25 °C, V_{CC1} = V_{CC2} = +3.4 V


Parameter	Conditions			Min	Тур	Max	Units	
Stability (all spurious)	Load VSWR = 6:1 at all angles	Load VSWR = 6:1 at all angles			-	-70	dBc	
Load VSWR = 10:1 at all angles, HPM		27.5	-	-	al Dura			
RF Output Ruggedness	No Damage LPM		LPM	16.0	-	-	dBm	
Phase Discontinuity Variation				-	±10	-	Deg	
All modes,		Channel	BW	-	-	-35	dBc	
Intermodulation	-40 dBc CW Interferer	2x Channel BW		-	-	-45	ubc	
Coupling Factor	All modes, RF OUT to CPLR OUT			-	20	-	dB	
Daisy-chain Insertion Loss	CPL IN to CPL OUT, 698 - 262	20 MHz, V	_{EN} =Low	-	-	0.5	dB	

Notes:

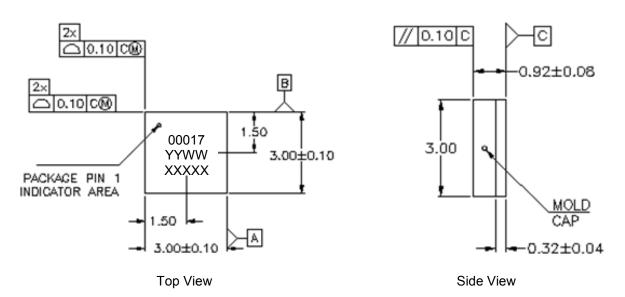
- 1. RF measurements are made with 3GPP TS36.101 LTE specification compliant waveforms.
- 2. For Vcc1>+4.2V, maximum leakage current is degraded to 25 uA. To guarantee leakage current as specified, it is required to keep both V_{CC1} and V_{CC2} on the same level or leave V_{CC2} in a high impedance state.

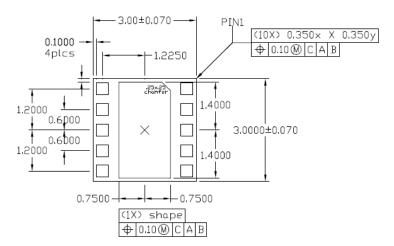
Truth Table				
Condition	V _{CC1}	V_{CC2}	V_{EN}	V_{MODE}
Power Down / PA Off	On	On	Low	Low
LPM (P _{OUT} ≤ 16 dBm)	On	On	High	High
$HPM (P_{OUT} \leq P_{MAX})$	On	On	High	Low


Application Circuit

^{* 10}uF cap is recommended when using a power supply for cleaning DC signal

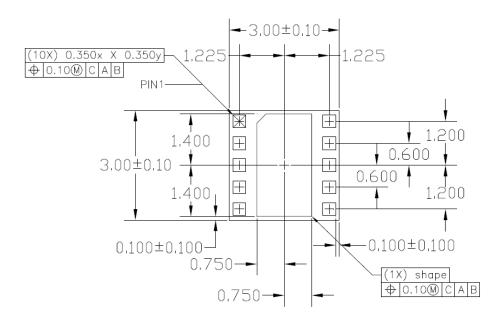
Pin Configuration and Description




Pin No.	Label	Description
1	V _{CC1}	Battery Voltage for biasing (VCCB).
2	RF IN	RF Input. The RF circuit is DC grounded. 50 Ohm RF impedance.
3	NC	No connect
4	V _{MODE}	Mode control pin
5	V _{EN}	PA Enable Digital Control Voltage
6	CPL OUT	High directivity coupler output
7	GND	Ground
8	CPL IN	High directivity coupler input
9	RF OUT	RF Output. 50 Ohm RF impedance
10	V _{CC2}	Collector Voltage for all stages. Can be connected to DC-DC converter.

Package Marking and Dimensions

Marking: Part number –00017 Year/week code - YYWW Lot code – XXXXX


Bottom View

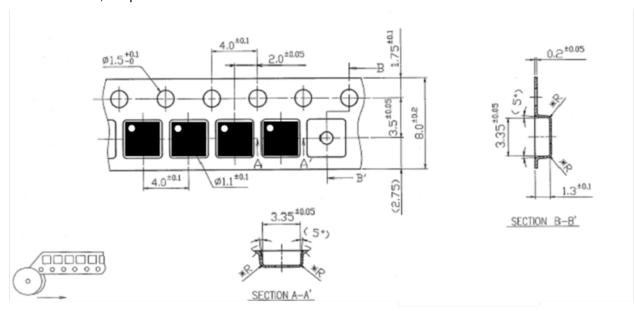
Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

PCB Mounting Pattern

Notes:

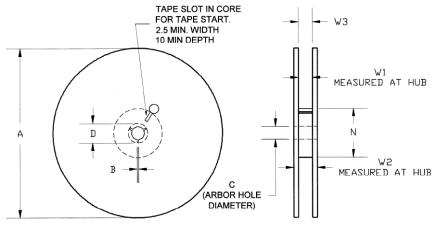
- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Only ground signal traces are allowed directly under the package.
- 3. Use 1 oz. copper minimum for top and bottom layer metal.
- 4. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation.
- 5. Do not remove or minimize via hole structure in the PCB. Thermal and RF grounding is critical.
- 6. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").


- 6 of 10 -

7. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

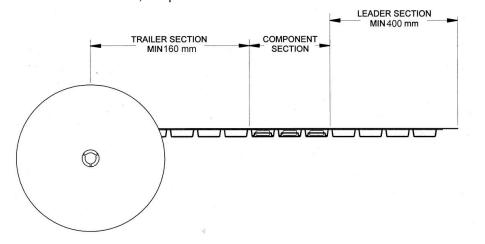
Tape and Reel Information

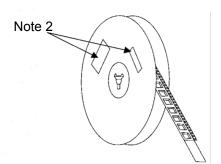
Tape and reel specifications for this part are also available on the TriQuint website. Standard T/R size = 2,500 pieces on a 7" reel.


User Direction of Feed

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.132	3.35
Cavity	Width	В0	0.132	3.35
Cavity	Depth	K0	0.051	1.30
	Pitch	P1	0.157	4.00
Centerline	Cavity to Perforation - Length Direction	P2	0.079	2.00
Distance	Cavity to Perforation - Width Direction	F	0.138	3.50
Cover Tape	Width	С	0.213	5.40
Carrier Tape	Width	W	0.315	8.00

Tape and Reel Information – Reel Dimensions

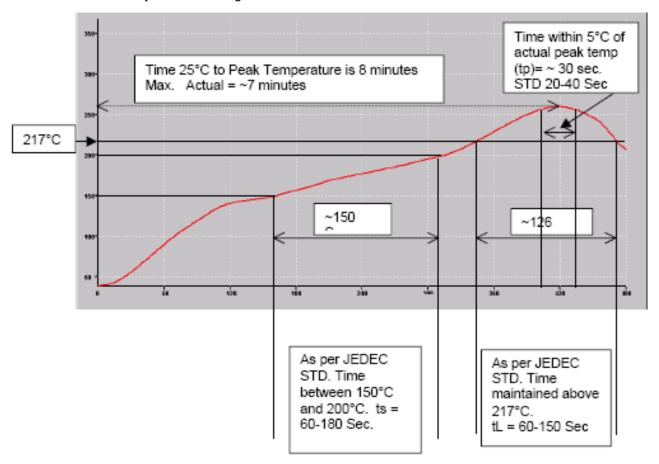

Packaging reels are used to prevent damage to devices during shipping and storage, loaded carrier tape is typically wound onto a plastic take-up reel. The reel size is 13" diameter. The reels are made from high-impact injection-molded polystyrene (HIPS), which offers mechanical and ESD protection to packaged devices.



Feature	Measure	Symbol	Size (in)	Size (mm)
Flange	Diameter	A	6.969	177.0
	Thickness	W2	0.559	14.2
	Space Between Flange	W1	0.346	8.8
Hub	Outer Diameter	N	4.016	102.0
	Arbor Hole Diameter	С	0.512	13.0
	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Tape and reel specifications for this part are also available on the TriQuint website. Standard T/R size = 7,000 pieces on a 7" reel.


Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Recommended Solder Reflow Profile

This part is rated for 260°C reflow profile. Below is a general recommendation for 260°C reflow. The specific profile used will need to take into account the requirements of the board, other components, and the layout. The following recommendation should only be used as a guideline.

Product Compliance Information

ESD Sensitivity Rating

Caution! ESD-Sensitive Device

ESD Rating: Class 1C

Value: ≥ 1000 V and < 2000 V Test: Human Body Model (HBM)

Standard: ESDA/JEDEC Standard JS-001-2012

MSL Rating

MSL Rating: Level 3

Test: 260°C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Contact plating: AU over NI

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.503.615.9000

 Email:
 info-sales@triquint.com
 Fax:
 +1.503.615.8902

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.