
FM310-108

300 W - FM Amplifier

Designed for FM radio transposers and transmitters, this amplifier incorporates microstrip technology and LDMOS device to enhance ruggedness and reliability.

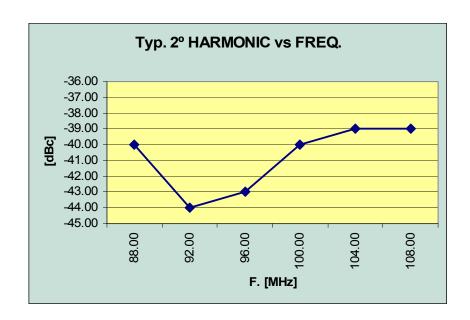
- 87.5 ÷ 108 MHz
- 48 Volts
- Input/Output 50 Ω
 P_{out}: 300 W min
 I quiescent 50mA
 Gain: 23 dB typ
- Class B
- Devices: MRF6V2300NBR1 or equivalent
- Configuration Single End
- Connectorized version available on request

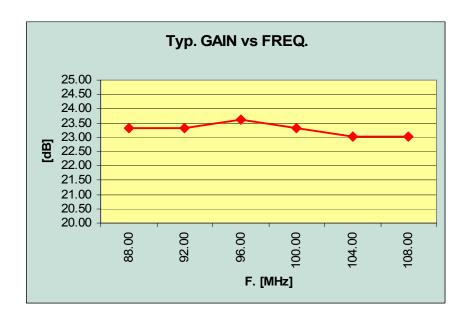
This picture is a mere example, it does not bind the provided product

ABSOLUTE MAXIMUM RATINGS (Device Flange T = 70 °C)

Symbol	Parameter	Value	Unit
V_S	Drain Voltage Supply	50	V dc
I_S	Supply Current	12	A dc
VSWR	Load Mismatch (all phase angles, Tc=40°C, Id=10A)	3:1	
Tstg	Storage Temperature Range	-30 + 100	°C
Tc	Operating Temperature	-10 +60	°C

ELECTRICAL SPECIFICATIONS (Base Plate T. = $45 \,^{\circ}$ C, 50Ω loaded, Vd = $48 \,^{\circ}$ V)


ELECTRICAL CHARACTERISTICS				
Characteristics	Min	Тур.	Max	Unit
Operating Frequency Range	87.5		108	MHz
Fundamental Output Power	300			W
Power Input		1.4	2.5	W
Power Gain (300W output)	21.5	23		dB
I Drain		8.2	9	A
Collector Efficiency (Load 50Ω)	70	78		%
Input VSWR		1.3:1	1.7:1	
Insertion Phase Variation (Unit to Unit)		±10		Degrees
Power Gain Variation (Unit to Unit)		±1		dB
F2 Second Harmonic	-35	-40		dB
F3 Third Harmonic		-40		dB


FM310-108	Issue: 0	Rev:1	Dog 1/2
FINIS 10-100	Date: 04/03/2008	Date: June 27, 2008	Page 1/3

FM310-108	Issue: 0	Rev:1	Dogo 2/2
FINIS 10-100	Date: 04/03/2008	Date: June 27, 2008	Page 2/3

PHYSICAL LAYOUT AND HEATSINK MOUNTING/HARDWARE

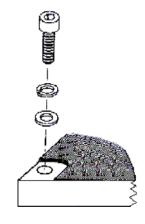
1.HEATSINK TOOLING

-Planarity: typical value 0.8μ -Roughness: better than $0.03\ mm$

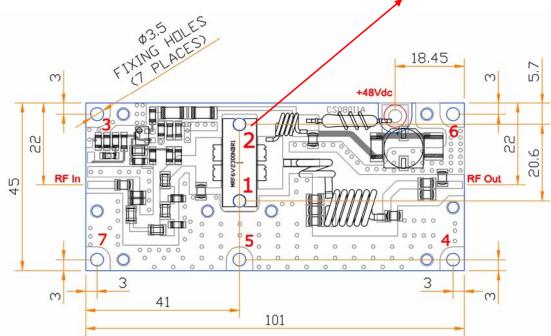
2.THERMAL COMPOUND

- -Paste with silicones
- -Thickness: optimum between $0.06~\mathrm{mm}$ and $0.15~\mathrm{mm}$, on the whole back surface of the amplifier.

3.SCREWS


- -M3 hexagon socket head cap screws or equivalent.
- -The recommended Torque is 0.6 N-m for M3 or 4-40 type screws as indicated on Freescale Semiconductor Application Note AN3263 Rev. 0.
- The screw tightening must be done at ambient temperature.

4.TIGHTENING ORDER


-See next figure:

WARNING: when mounting this mechanical component, please add thermal compound between its bottom part and the device surface, as described in point 2 of this paragraph.

 $\underline{\textbf{NOTE}}\!\!:$ ensure a minimum air flow on the components surface of the pallet.

	FM310-108	Issue: 0	Rev:1	Page 3/3
FIVIS 10-100	FIVIS 10-100	Date: 04/03/2008	Date: June 27, 2008	Page 3/3

FM310-108

Res-Ingenium

Via dei Vasari, 17 Zona Industriale Fontanelle di Bardano 05018 Orvieto (TR) Italy

Telephone: +39 0736 316333 Fax: +39 0763 316002 Internet: res-ingenium.com E-Mail: map@res-ingenium.com

IMPORTANT NOTICE

RES-INGENIUM RESERVE THE RIGHT TO MAKE CHANGES TO THE PRODUCT(S) OR INFORMATION CONTAINED HEREIN WITHOUT NOTICE. RES-INGENIUM ASSUMES NO RESPONSIBILITY FOR ANY ERRORS WHICH MAY APPEAR IN THIS DOCUMENT.

WARRANTY INFORMATION APPLICABLE TO THE PRODUCT IDENTIFIED HEREIN IS AVAILABLE UPON REQUEST. NOTHING CONTAINED HEREIN SHALL CONSTITUTE A WARRANTY, REPRESENTATION OR GUARANTEE OF ANY KIND. RES-INGENIUM EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND/OR IMPLIED INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, AND OF FITNESS FOR A PARTICULAR PURPOSE, USE OR APPLICATION.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Res-Ingenium.

WARNING

RES-INGENIUM PRODUCTS ARE NOT INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS. USE OF A RES-INGENIUM PRODUCT IN ANY SUCH APPLICATION WITHOUT WRITTEN CONSENT IS PROHIBITED.

	FM310-108	Issue: 0	Rev:1	Page 4/3
FIVIS 10-100	LINI2 10-100	Date: 04/03/2008	Date: June 27, 2008	Page 4/3