

LDU45

45W LDMos Technology Amplifier

Designed for analog and digital TV transposers and transmitters, this amplifier incorporates microstrip technology and single end LDMos Devices to enhance ruggedness and reliability.

- 470 860 MHz
- 28 ÷32 Volt (30V Nominal)
- Input/Output: $50\Omega 50\Omega$
- Pout 45 Watt (CW)
- Pout 45 Watt ps Separate Ampl.
- Pout 30 Watt ps Common Ampl.
- Pout 10 Watt rms DVB
- Gain: 13 dB min.
- Class AB
- Devices: MRF9060 or equivalent
- Connectorized version available
- APL corrector on board

Dimensions (LxWxH) 136x78x20mm (5.36"x3.07"x0.79")

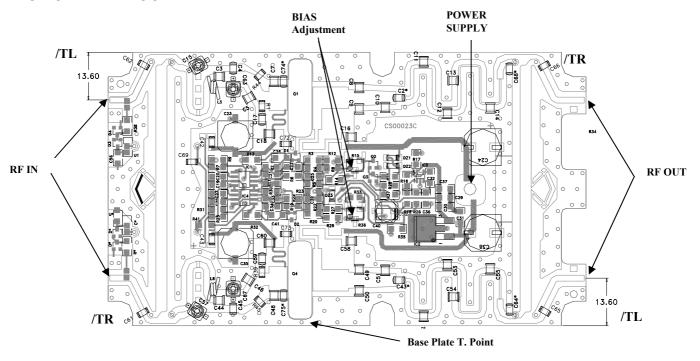
This picture is a mere example, it does not bind the provided product

ABSOLUTE MAXIMUM RATINGS (Device Flange T = 70 °C)

Symbol	Parameter	Value	Unit
V _S	Voltage Supply	35	V dc
I _S	Current Supply	5	A dc
Tstg	Storage Temperature Range	-30 + 100	°C
Тс	Operating Case Temperature	$0 + 75^{1}$	°C
Ψ	VSWR max	3:1 all phase angles	

ELECTRICAL SPECIFICATIONS (Base Plate T. = $45 \,^{\circ}$ C, 50Ω loaded, Vd = $30 \,^{\circ}$ V)

Symbol	Parameter	Test Conditions	Value		Unit	
			Min	Typ.	Max	
BW	Bandwidth	$P_{out} = 45 \text{ W (CW)}$	470		860	MHz
Gp	Power gain	$P_{ref} = 45 \text{ W (CW)}$	13	15	-	dB
P _{out} – 1dB	Power Output @ 1dB Compression	Referred to $P_{out} = 5W (CW)$	45	-	-	W
Iq *	Supply Current	P _{out} = 0 W – Total *	-	-	1	A
I _{tot} *	@ P _{Max}		-		4	A
Ω	Input/Output	50 Ohm				Ohm
Irl	Input return loss	P _{out} = 45 W CW	15	18	-	dB
	Load mismatch	Pref = 45 W CW, f= 860MHz, load VSWR = 2:1, all phase angles		No degradation in Pout		n Pout
Gr	Gain Flatness	Pref = 45 W CW, BW: 470-860MHz		±0.5	±1	dB
η	Drain Efficiency	P _{out} = 45 W (CW)	35	45	-	%
	Pout separate ampl.	Sync. Compression < 1dB without correction	45			
	Pout common ampl.	Pout 30W ps common ampl. Dual sound, with Red Field sound 1 @ -13dB and sound 2 @ -20dB without precorrection	45	50		
	Pout DVB-T	Pout 10Wrms without precorrection	28	30		


¹ Warning: The base plate temperature must be 75 °C max, using an appropriate Heatsink.

NOTES: The input power must not exceed +6dB, for 1 microsec., the nominal input power referred to the 1dBcp power output; the Quiescient Current is set at typical value, in factory. This parameter can be adjusted by the final user depending on the applied signal and/or frequency and output power. (Warning: Do not exceed the specified max Iq value).

GR00165	Issue: 0	Rev: 5	Pag. 1/4
	Date: 18/01/2001	Date: December 2006	

PC BOARD LAYOUT

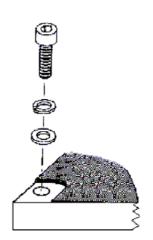
NOTE. In response to customer request, this pallet has been designed to allow two different positions of IN/OUT connections: /TL = connection on the left side, /TR = connection on the right side.

HEATSINK MOUNTING/HARDWARE

1.HEATSINK TOOLING

- -Planarity: typical value 0.8
- -Roughness: better than 0.03 mm

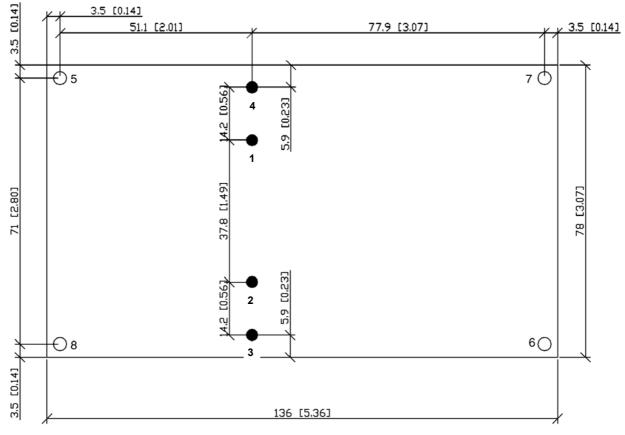
2.THERMAL COMPOUND


- -Paste with silicones
- -Thickness: optimum between 0.06 mm and 0.15 mm, on the whole back surface of the amplifier.

3 SCREWS

- 4 x M3 -Cross head screws (position 5, 6, 7, 8) 4 x M2.5 (position 1, 2, 3, 4).
- The recommended Torque is 12 Kg/cm for M3 type screws and 10 Kg/cm for M2.5 type screws.

4.TIGHTENING ORDER


-See next figure:

GR00165	Issue: 0	Rev: 5	Pag 2/4
GR00103	Date: 18/01/2001	Date: December 2006	Pag. 2/4

Dimensions: mm[inch]

GR00165	Issue: 0	Rev: 5	Pag. 3/4
	Date: 18/01/2001	Date: December 2006	· ·

Res-Ingenium

Via dei Vasari, 17 Zona Industriale Fontanelle di Bardano 05018 Orvieto (TR) Italy

Telephone: +39 0736 316333 Fax: +39 0763 316002 Internet: res-ingenium.com E-Mail: map@res-ingenium.com

IMPORTANT NOTICE

RES-INGENIUM RESERVE THE RIGHT TO MAKE CHANGES TO THE PRODUCT(S) OR INFORMATION CONTAINED HEREIN WITHOUT NOTICE. RES-INGENIUM ASSUMES NO RESPONSIBILITY FOR ANY ERRORS WHICH MAY APPEAR IN THIS DOCUMENT.

WARRANTY INFORMATION APPLICABLE TO THE PRODUCT IDENTIFIED HEREIN IS AVAILABLE UPON REQUEST. NOTHING CONTAINED HEREIN SHALL CONSTITUTE A WARRANTY, REPRESENTATION OR GUARANTEE OF ANY KIND. RES-INGENIUM EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND/OR IMPLIED INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, AND OF FITNESS FOR A PARTICULAR PURPOSE, USE OR APPLICATION.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Res-Ingenium.

WARNING

RES-INGENIUM PRODUCTS ARE NOT INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS. USE OF A RES-INGENIUM PRODUCT IN ANY SUCH APPLICATION WITHOUT WRITTEN CONSENT IS PROHIBITED.

GR00165	Issue: 0	Rev: 5	D 4/4
GR00103	Date: 18/01/2001	Date: December 2006	Pag. 4/4