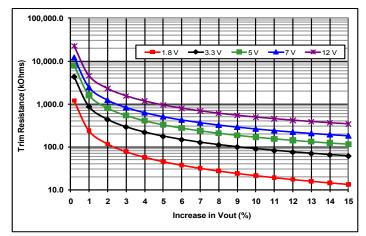
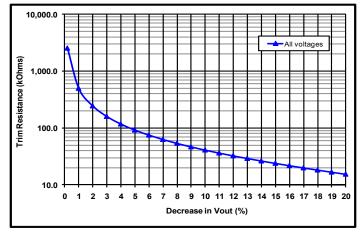
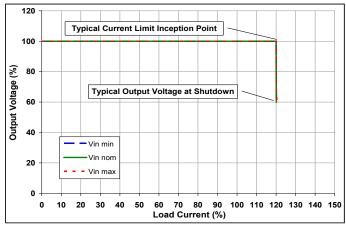


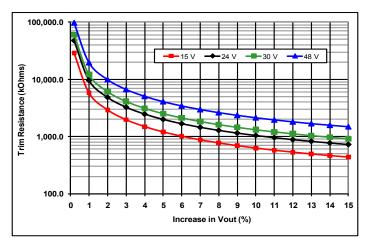

IQ64-QT Family Electrical Characteristics (all output voltages) Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

		÷		
1				
-1		150	V	Continuous
		135	V	Continuous
		-	V	
				Reinforced insulation
		3000	V dc	
		3000	V dc	
		3000	V dc	
-40		100	°C	Baseplate temperature
-45		125	°C	
-2		18	V	
18	64	135	V	See Note 1
17.1	17.5	17.9	V	
16.1	16.5	16.9	V	
	1.0		V	
	-		V	Not Available
	220uF		μF	Typical ESR 0.1-0.2 Ω
				Internal values; see Figure D
	,			, , ,
	10		ms	Full load, Vout=90% nom.
200	230	250	ms	-40 °C to +125 °C; Figure E
	0		%	Maximum Output Capacitance
		1		
				See Absolute Maximum Ratings
	100		MΩ	
				See Note 2
G CURVES				
		125	°C	Package rated to 150 °C
		125		UL rated max operating temp 130 °C
		125	°C	
		100	°C	
230	250	270	kHz	Insulation stage switching freq. is half this
		-		
2.4		18	V	
-2		0.8		
				Application notes Figures A & B
	5		V	
	50		kΩ	
			°C	Average PCB Temperature
	10		°C	
		·		1
	1,49		10 ⁶ Hrs.	Tb = 70°C
				$Tb = 70^{\circ}C$
				See our website for details
	-45 -2 18 17.1 16.1 200 200 CURVES	-45 -2 18 64 17.1 17.5 16.1 16.5 1.0 - 220uF 2\1.2 220uF 2\1.2 2 10 200 230 0 230 0 10 200 230 0 10 200 230 0 10 200 230 0 10 200 230 0 10 200 230 0 230 0 230 0 250 100 1000 1000	-2 3000 -40 3000 -40 100 -45 125 -2 18 18 64 135 17.1 17.5 17.9 16.1 16.5 16.9 1.0 - 220uF 2.1.2 2.1.2 - 10 - - 220uF 2.1.2 - 100 2.00 230 250 0 100 100 - 200 230 250 0 1100 1000 1000 - 2200 2.30 250 0 200 230 250 - 200 230 250 125 100 1000 1000 100 230 250 270 - 230 250 270 - 230 250 270 - 230 5 0.8 - 5 50 50 -	Image: constraint of the symbol is a symbol is symbol is a symbol is a symbol is a symbol is symbol is


Note 2: Higher values of isolation capacitance can be added external to the module.


Family Figures (all output voltages)


Common Figure 1: Typical startup waveform. Input voltage pre-applied, ON/ OFF Pin on Ch 2.


Common Figure 3: Trim graph for trim-up 1.8 to 12 V outputs.

Common Figure 5: Trim graph for trim down.

Common Figure 2: Output voltage vs. load current showing typical current limit curves and converter shutdown points.

Common Figure 4: Trim graph for trim-up 15 to 48 V outputs.

IQ64018QTx36 Electrical Characteristics(1.8 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS					
Maximum Input Current			5.9	A	Vin min; trim up; in current limit
No-Load Input Current		110	140	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.06		V	See Figure 6
Input Terminal Ripple Current		500		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	1.782	1.800	1.818	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-27		27	mV	
Total Output Voltage Range	1.755		1.845	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	70	140	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		36	A	Subject to thermal derating
Output DC Current-Limit Inception	39.6	43.2	46.8	A	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		0.9		V	
Back-Drive Current Limit while Enabled		1.7		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			15,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		120		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	2.1	2.2	2.3	V	Over full temp range
EFFICIENCY		·		·	·
100% Load		80		%	See Figure 1 for efficiency curve
50% Load		81		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at low line and full load.

Input:18-135V Output:1.8V Current:36A Part No.:IQ64018QTx36

Technical Specification

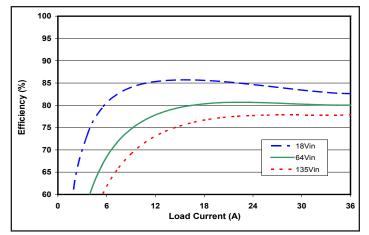


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

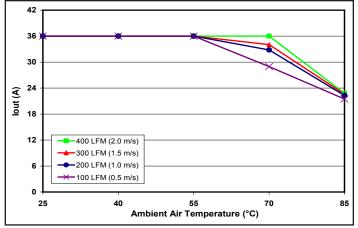


Figure 3: Encased Converter (no heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

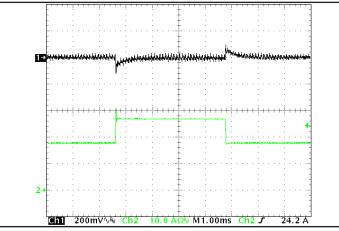


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: lout.

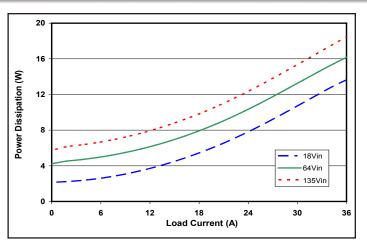


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

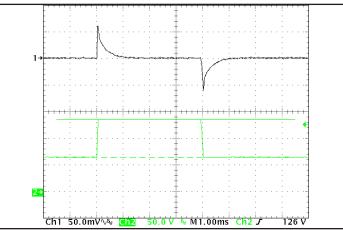


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

IQ64033QTx27 Electrical Characteristics(3.3 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic risto nower dersting

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS			L	1	
Maximum Input Current			7.8	А	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.12		V	See Figure 6
Input Terminal Ripple Current		500		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS		·			·
Output Voltage Set Point	3.267	3.300	3.333	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-50		50	mV	
Total Output Voltage Range	3.217		3.383	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	100	200	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		27	A	Subject to thermal derating
Output DC Current-Limit Inception	29.7	32.4	35.1	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		1.7		V	
Back-Drive Current Limit while Enabled		2		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			10,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		220		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	3.9	4.0	4.2	V	Over full temp range
EFFICIENCY		·	· 	·	·
100% Load		84		%	See Figure 1 for efficiency curve
50% Load		83		%	See Figure 1 for efficiency curve
late 1. Output is terminated with 1 uE coromic an		CD tantalum	canacitore	Ear applie	sations requiring reduced output voltage ripple and

50% Load | 83 | % See Figure 1 for efficiency curve Note 1: Output is terminated with 1 μ F ceramic and 15 μ F low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at low line and full load.

Doc.# 005-0005096 Rev. E

Input:18-135V Output:3.3V Current:27A Part No.:IQ64033QTx27

Technical Specification

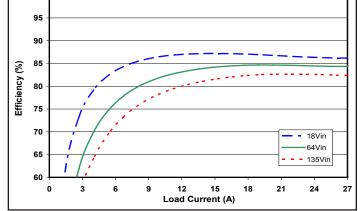


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

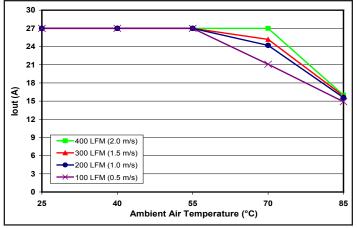


Figure 3: Encased Converter (no heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

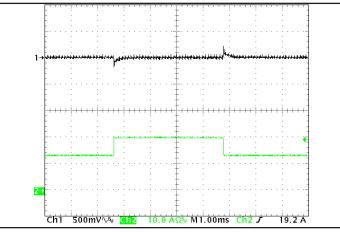


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: lout.

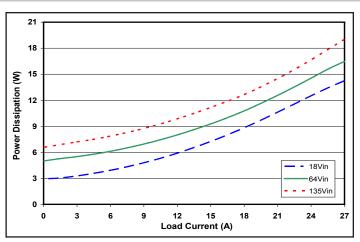


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

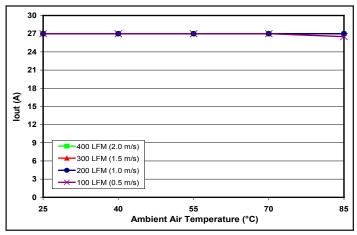


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

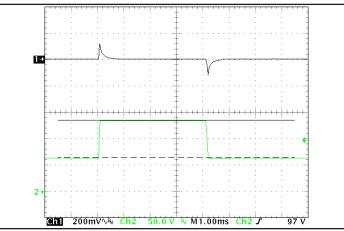


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

Page 7

IQ64050QTx20 Electrical Characteristics(5.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS				1	
Maximum Input Current			8.6	А	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.2		V	See Figure 6
Input Terminal Ripple Current		600		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
DUTPUT CHARACTERISTICS	·				•
Output Voltage Set Point	4.950	5.000	5.050	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-75		75	mV	
Fotal Output Voltage Range	4.875		5.125	V	Over sample, line, load, temperature & life
Dutput Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	100	200	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		20	А	Subject to thermal derating
Dutput DC Current-Limit Inception	22.0	24.0	26.0	А	Output voltage 10% Low
Dutput DC Current-Limit Shutdown Voltage		1.8		V	
Back-Drive Current Limit while Enabled		2		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			8,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/ μ s)		260		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Dutput Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	5.9	6.1	6.4	V	Over full temp range
EFFICIENCY					
100% Load		85		%	See Figure 1 for efficiency curve
50% Load		87		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:18-135V Output:5V Current:20A Part No.:IQ64050QTx20

Technical Specification

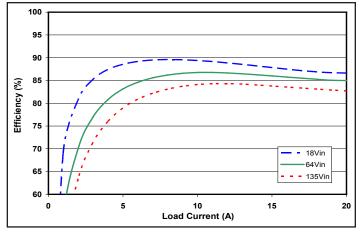


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

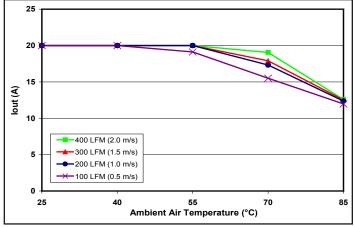


Figure 3: Encased Converter (no heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

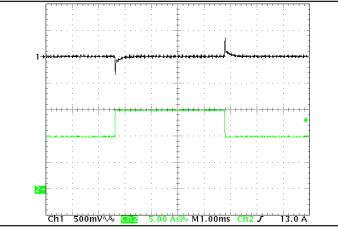


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Iout.

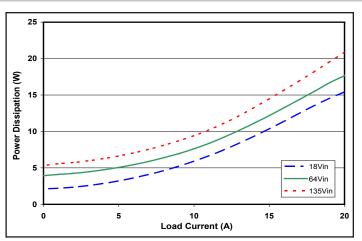


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

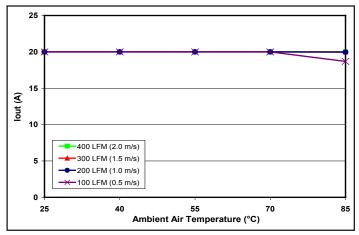


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

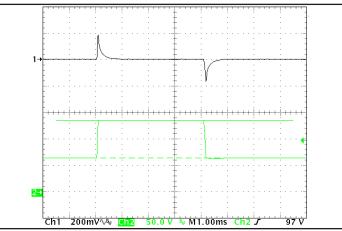


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

IQ64070QTx14 Electrical Characteristics(7.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature riate power derating Specifications subject to change without notic

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS	ľ		1		
Maximum Input Current			8.2	A	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.23		V	See Figure 6
Input Terminal Ripple Current		800		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	6.930	7.000	7.070	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-105		105	mV	
Total Output Voltage Range	6.825		7.175	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	100	200	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		14	А	Subject to thermal derating
Output DC Current-Limit Inception	15.4	16.8	18.2	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		0.9		V	
Back-Drive Current Limit while Enabled		0.55		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			8,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		260		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	8.2	8.5	8.9	V	Over full temp range
EFFICIENCY	·	·	·	·	·
100% Load		88		%	See Figure 1 for efficiency curve
50% Load		87		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com) Note 2: Trim-up range is limited below 10% at low line and full load.

Input:18-135V Output:7V Current:14A Part No.:IQ64070QTx14

Technical Specification

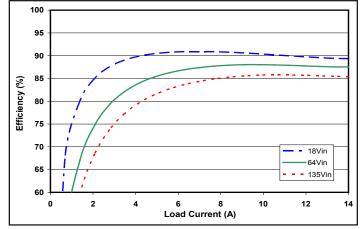
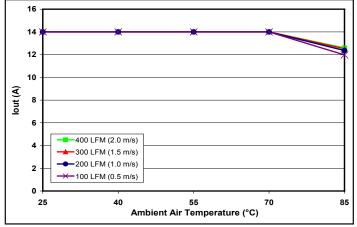
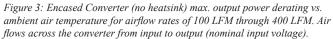




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.



Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Iout.

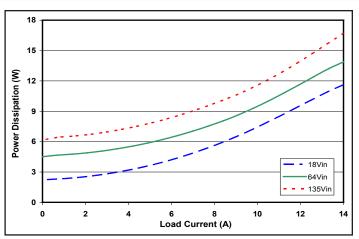


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

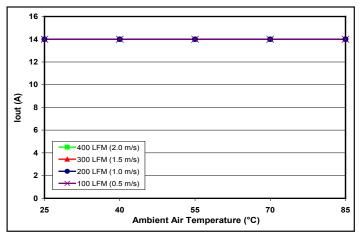


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

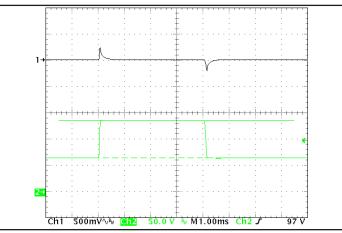


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

IQ64120QTx08 Electrical Characteristics(12.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS					
Maximum Input Current			7.2	А	Vin min; Vout nom; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.37		V	
Input Terminal Ripple Current		800		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
DUTPUT CHARACTERISTICS					
Output Voltage Set Point	11.88	12.00	12.12	V	
Output Voltage Regulation					see Note 3
Over Line		±0.1	±0.3	%	see Note 3
Over Load		±0.1	±0.3	%	
Over Temperature	-180		180	mV	
Fotal Output Voltage Range	11.70		12.30	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	110	220	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		8	A	Subject to thermal derating
Dutput DC Current-Limit Inception	8.8	9.6	10.4	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		6		V	
Back-Drive Current Limit while Enabled		0.5		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			1,500	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		360		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Dutput Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Dutput Over-Voltage Protection	14.0	14.6	15.2	V	Over full temp range
EFFICIENCY					
100% Load		89		%	See Figure 1 for efficiency curve

50% Load

Note 1: Output is terminated with 1 μ F ceramic and 15 μ F low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

%

87

Note 2: Trim-up range is limited below 10% at an input voltage less than 21 V.

Note 3: Output voltage regulation cannot be achieved for an input voltage less than 19V.

See Figure 1 for efficiency curve

Input:18-135V Output:12V Current:8A Part No.:IQ64120QTx08

Technical Specification

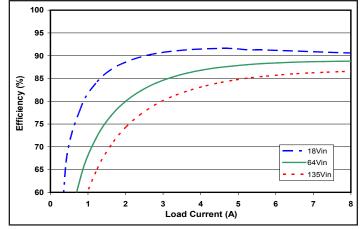
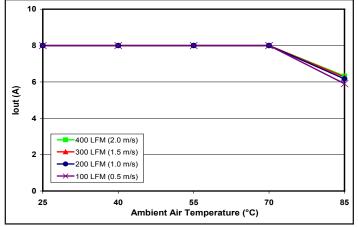
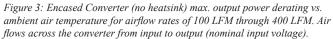




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

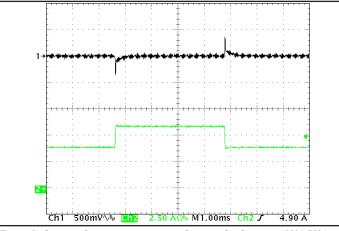


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of lout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: lout.

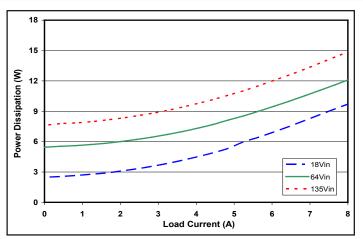


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

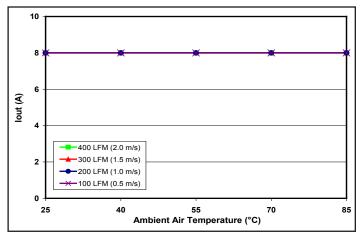


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

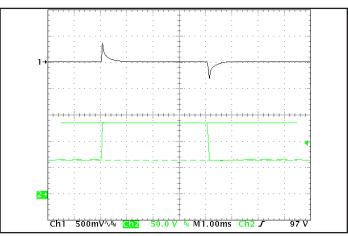


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

IQ64150QTx07 Electrical Characteristics(15.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature Specifications subject to change without notic

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS			1	1	
Maximum Input Current			7.4	А	Vin min; Vout nom; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.47		V	See Figure 6
Input Terminal Ripple Current		800		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	14.85	15.00	15.15	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-225		225	mV	
Total Output Voltage Range	14.62		15.38	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak		110	220	mV	Full load
RMS		30	60	mV	Full load
Operating Output Current Range	0		6.5	A	Subject to thermal derating
Output DC Current-Limit Inception	7.2	7.8	8.5	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		7.5		V	
Back-Drive Current Limit while Enabled		0.35		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			1,000	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		520		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5; see Note 2
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	17.6	18.3	19.1	V	Over full temp range
EFFICIENCY		' 	·	·	
100% Load		88		%	See Figure 1 for efficiency curve
50% Load		87		%	See Figure 1 for efficiency curve
	a de celou e		·	'e	

Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: Trim-up range is limited below 10% at an input voltage less than 20 V.

Input:18-135V Output:15V Current:6.5A Part No.:IQ64150QTx07

95

Technical Specification

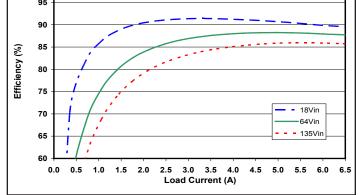


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

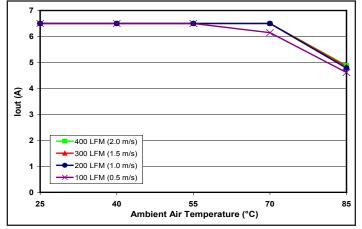


Figure 3: Encased Converter (no heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

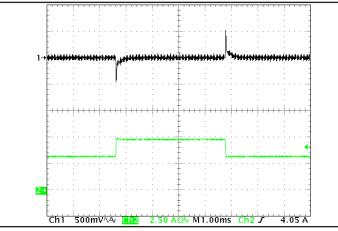


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Iout.

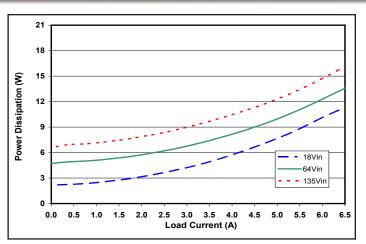


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

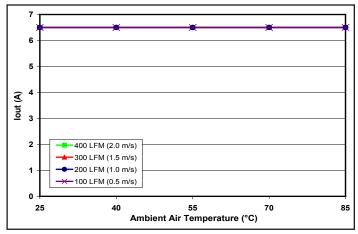


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

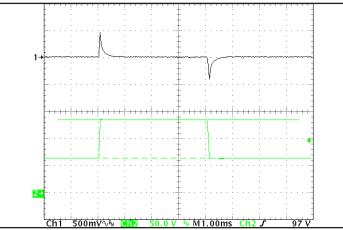


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic and 15 μ F tantalum capacitors. Ch 1: Vout, Ch 2: Vin.

IQ64240QTx04 Electrical Characteristics(24.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature , Specifications subject to change without notic

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS					
Maximum Input Current			8.0	A	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		0.88		V	See Figure 6
Input Terminal Ripple Current		800		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS		·		·	
Output Voltage Set Point	23.76	24.00	24.24	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-360		360	mV	
Total Output Voltage Range	23.40		24.60	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	110	220	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		4	А	Subject to thermal derating
Output DC Current-Limit Inception	4.4	4.8	5.2	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		12		V	
Back-Drive Current Limit while Enabled		0.15		А	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			400	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		800		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	28.1	29.3	30.5	V	Over full temp range
EFFICIENCY		·	·	·	
100% Load		88		%	See Figure 1 for efficiency curve
50% Load		88		%	See Figure 1 for efficiency curve

Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:18-135V Output:24V Current:4A Part No.:IQ64240QTx04

Technical Specification

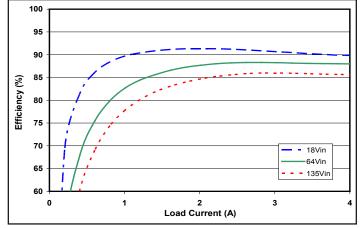
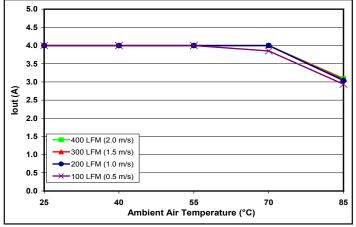



Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

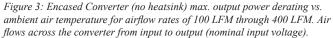
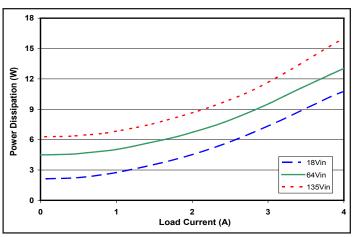
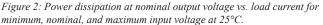




Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Iout.

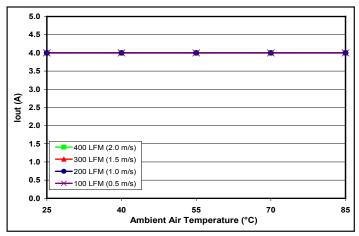


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

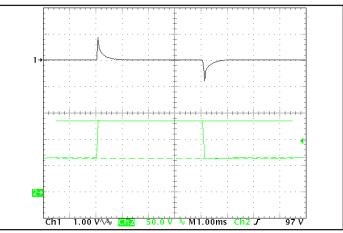


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Vin.

IQ64300QTx03 Electrical Characteristics(30.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS				1	
Maximum Input Current			8.0	А	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		1.15		V	See Figure 6
Input Terminal Ripple Current		900		mA	RMS
Recommended Input Fuse			20	A	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS					
Output Voltage Set Point	29.70	30.00	30.30	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-450		450	mV	
Total Output Voltage Range	29.25		30.75	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	110	220	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		3.2	А	Subject to thermal derating
Output DC Current-Limit Inception	3.5	3.8	4.2	А	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		19		V	
Back-Drive Current Limit while Enabled		0.13		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		1		mA	Negative current drawn from output
Maximum Output Capacitance			250	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/µs)		1100		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	35.1	36.6	38.1	V	Over full temp range
EFFICIENCY					
100% Load		88		%	See Figure 1 for efficiency curve
50% Load		88	1	%	See Figure 1 for efficiency curve

50% Load 88 See Figure 1 for efficiency curve Note 1: Output is terminated with 1 μF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:18-135V Output:30V Current:3.2A Part No.:IQ64300QTx03

Technical Specification

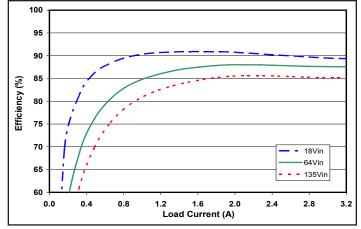
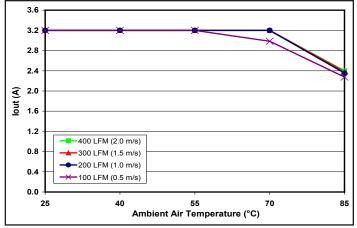
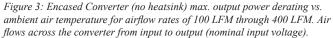




Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

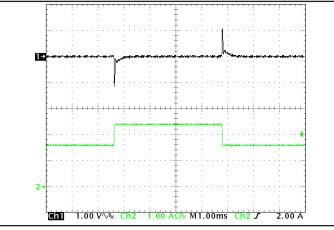


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Iout.

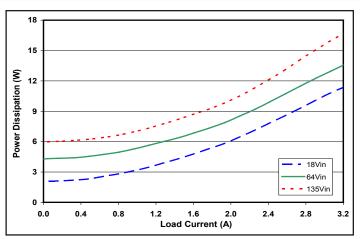


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

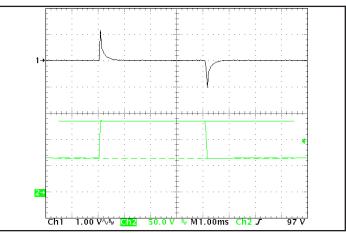


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Vin.

Input:18-135V Output:48V **Current:2**A Part No.: IQ64480QTx02 **Technical Specification**

IQ64480QTx02 Electrical Characteristics(48.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 64V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions
INPUT CHARACTERISTICS				1	
Maximum Input Current			8.2	A	Vin min; trim up; in current limit
No-Load Input Current		100	130	mA	
Disabled Input Current		2	4	mA	
Response to Input Transient		2.2		V	See Figure 6
Input Terminal Ripple Current		900		mA	RMS
Recommended Input Fuse			20	А	Fast acting external fuse recommended
OUTPUT CHARACTERISTICS	·				
Output Voltage Set Point	47.52	48.00	48.48	V	
Output Voltage Regulation					
Over Line		±0.1	±0.3	%	
Over Load		±0.1	±0.3	%	
Over Temperature	-720		720	mV	
Total Output Voltage Range	46.80		49.20	V	Over sample, line, load, temperature & life
Output Voltage Ripple and Noise					20 MHz bandwidth; see Note 1
Peak-to-Peak	0	110	220	mV	Full load
RMS		20	40	mV	Full load
Operating Output Current Range	0		2	A	Subject to thermal derating
Output DC Current-Limit Inception	2.20	2.40	2.60	A	Output voltage 10% Low
Output DC Current-Limit Shutdown Voltage		22		V	
Back-Drive Current Limit while Enabled		0.1		A	Negative current drawn from output
Back-Drive Current Limit while Disabled		2		mA	Negative current drawn from output
Maximum Output Capacitance			100	μF	Vout nominal at full load (resistive load)
Output Voltage during Load Current Transient					
Step Change in Output Current (0.1 A/ μ s)		1700		mV	50% to 75% to 50% Iout max
Settling Time		400		μs	To within 1% Vout nom
Output Voltage Trim Range	-20		10	%	Across Pins 8&4; Common Figures 3-5
Output Voltage Remote Sense Range			10	%	Across Pins 8&4
Output Over-Voltage Protection	56.2	58.6	61.0	V	Over full temp range
EFFICIENCY					
100% Load		86		%	See Figure 1 for efficiency curve
50% Load		87		%	See Figure 1 for efficiency curve

50% Load 87 See Figure 1 for efficiency curve Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Input:18-135V Output:48V Current:2A Part No.:IQ64480QTx02

Technical Specification

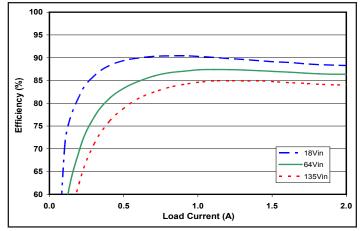


Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

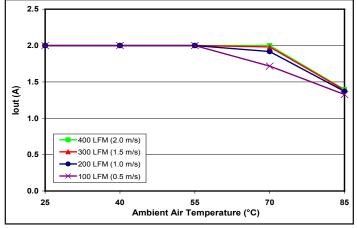


Figure 3: Encased Converter (no heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

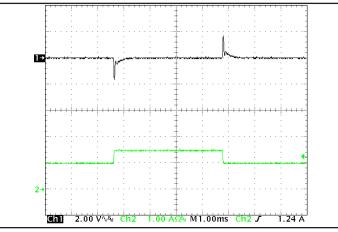


Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.2 A/\mu s$). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Iout.

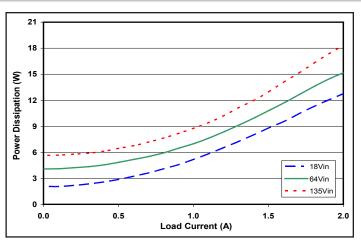


Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

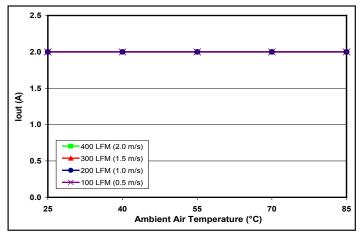


Figure 4: Encased converter (with 1/4" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

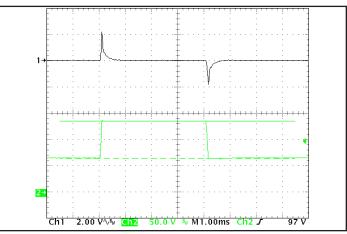
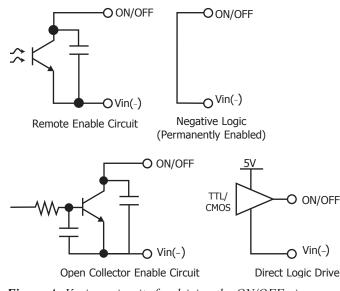


Figure 6: Output voltage response to step-change in input voltage (1000 V/ms). Load cap: 1 μ F ceramic capacitor. Ch 1: Vout, Ch 2: Vin.


BASIC OPERATION AND FEATURES

This converter series uses a two-stage power conversion topology. The first stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage step-up or step-down to achieve the output voltage required.

Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low on-state resistance, dissipate far less energy than Schottky diodes. This is the primary reason that the converter has such high efficiency, even at very low output voltages and very high output currents.

These converters are offered totally encased to withstand harsh environments and thermally demanding applications. Dissipation throughout the converter is so low that it does not require a heatsink for operation in many applications; however, adding a heatsink provides improved thermal derating performance in extreme situations.

This series of converters use the industry standard footprint and pin-out configuration.

Figure A: Various circuits for driving the ON/OFF pin.

CONTROL FEATURES

REMOTE ON/OFF (Pin 2): The ON/OFF input, Pin 2, permits the user to control when the converter is on or off. This input is referenced to the return terminal of the input bus, Vin(-). The ON/OFF signal is active low (meaning that a low turns the converter on). Figure A details four possible circuits for driving the ON/OFF pin. Figure B is a detailed look of the internal ON/ OFF circuitry.

REMOTE SENSE(\pm) (Pins 7 and 5): The SENSE(\pm) inputs correct for voltage drops along the conductors that connect the converter's output pins to the load.

Pin 7 should be connected to Vout(+) and Pin 5 should be connected to Vout(-) at the point on the board where regulation is desired. A remote connection at the load can adjust for a voltage drop only as large as that specified in this datasheet, that is

$$[Vout(+) - Vout(-)] - [Vsense(+) - Vsense(-)] \le$$

Sense Range % x Vout

Pins 7 and 5 must be connected for proper regulation of the output voltage. If these connections are not made, the converter will deliver an output voltage that is slightly higher than its specified value.

Note: the output over-voltage protection circuit senses the voltage across the output (pins 8 and 4) to determine when it should trigger, not the voltage across the converter's sense leads (pins 7 and 5). Therefore, the resistive drop on the board should be small enough so that output OVP does not trigger, even during load transients.

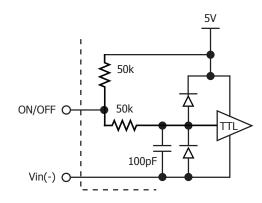


Figure B: Internal ON/OFF pin circuitry

OUTPUT VOLTAGE TRIM (Pin 6): The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications.

To decrease the output voltage, the user should connect a resistor between Pin 6 and Pin 5 (SENSE(-) input). For a desired decrease of the nominal output voltage, the value of the resistor should be

 $R_{\text{trim-down}} = \left(\frac{511}{\Delta\%}\right) - 10.22 \quad (k\Omega)$

$$\Delta\% = \left| \frac{\text{Vnominal} - \text{Vdesired}}{\text{Vnominal}} \right| \times 1$$

where

To increase the output voltage, the user should connect a resistor between Pin 6 and Pin 7 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be

.00%

$$R_{\text{trim-up}} = \left(\frac{5.11V_{\text{OUT}} \times (100 + \Delta\%)}{1.225\Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (k\Omega)$$

where $V_{\text{out}} = \text{Nominal Output Voltage}$

Trim graphs show the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down.

<u>Note</u>: the TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients.

It is not necessary for the user to add capacitance at the Trim pin. The node is internally bypassed to eliminate noise.

Total DC Variation of VOUT: For the converter to meet its full specifications, the maximum variation of the dc value of VOUT, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range.

PROTECTION FEATURES

Input Under-Voltage Lockout: The converter is designed to turn off when the input voltage is too low, helping avoid an input system instability problem, described in more detail in the application note titled "Input System Instability" on our website. The lockout circuitry is a comparator with dc hysteresis. When the input voltage is rising, it must exceed the typical Turn-On Voltage Threshold value (listed on the specifications page) before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off.

Output Current Limit: The maximum current limit remains constant as the output voltage drops. However, once the impedance of the load across the output is small enough to make the output voltage drop below the specified Output DC Current-Limit Shutdown Voltage, the converter turns off.

The converter then enters a "hiccup mode" where it repeatedly turns on and off at a 5 Hz (nominal) frequency with a 5% duty cycle until the short circuit condition is removed. This prevents excessive heating of the converter or the load board.

Output Over-Voltage Limit: If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 200 ms the converter will automatically restart.

Over-Temperature Shutdown: A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the Over-Temperature Shutdown value. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the Over-Temperature Shutdown Restart Hysteresis value.

APPLICATION CONSIDERATIONS

Input System Instability: This condition can occur because any dc-dc converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it. **Application Circuits:** Figure C provides a typical circuit diagram which details the input filtering and voltage trimming.

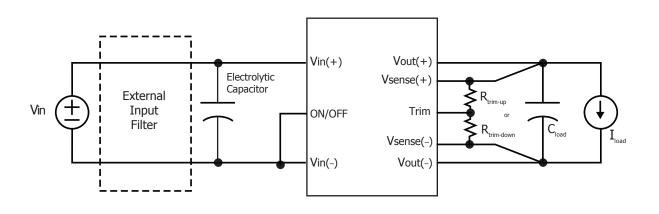


Figure C: Typical application circuit (negative logic unit, permanently enabled).

Input Filtering and External Capacitance: Figure D provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor.

The recommended external input capacitance is specified in the Input Characteristics section on the Electrical Characteristics page. More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website.

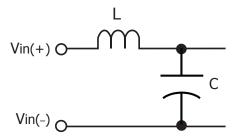
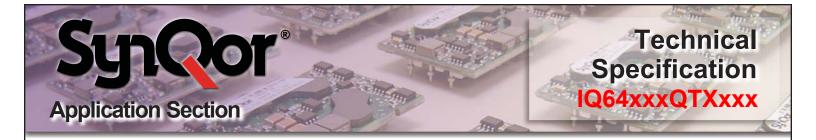



Figure D: Internal Input Filter Diagram (component values listed on the specifications page).

Startup Inhibit Period: The Startup Inhibit Period ensures that the converter will remain off for approximately 200 ms when it is shut down for any reason. When an output short is present, this generates a 5 Hz "hiccup mode," which prevents the converter from overheating. In all, there are seven ways that the converter can be shut down, initiating a Startup Inhibit Period:

- Input Under-Voltage Lockout
- Input Over-Voltage Lockout
- Output Over-Voltage Protection
- Over Temperature Shutdown
- Current Limit
- Short Circuit Protection
- Turned off by the ON/OFF input

Figure E shows three turn-on scenarios, where a Startup Inhibit Period is initiated at t_0 , t_1 , and t_2 :

Before time t_0 , when the input voltage is below the UVL threshold, the unit is disabled by the Input Under-Voltage Lockout feature. When the input voltage rises above the UVL threshold, the Input Under-Voltage Lockout is released, and a Startup Inhibit Period is initiated. At the end of this delay, the ON/OFF pin is evaluated, and since it is active, the unit turns on.

At time t_1 , the unit is disabled by the ON/OFF pin, and it cannot be enabled again until the Startup Inhibit Period has elapsed.

When the ON/OFF pin goes high after t_2 , the Startup Inhibit Period has elapsed, and the output turns on within the typical Turn-On Time.

Thermal Considerations: The maximum operating base-plate temperature, T_B, is 100 °C. As long as the user's thermal system keeps T_B \leq 100 °C, the converter can deliver its full rated power.

A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is only necessary to determine the thermal resistance, $R_{TH_{BA}}$, of the chosen heatsink between the base-plate and the ambient air for a given airflow rate. This information is usually available from the heatsink vendor. The following formula can the be used to determine the maximum power the converter can dissipate for a given thermal condition if its base-plate is to be no higher than 100 °C.

$$P_{diss}^{max} = \frac{100 \text{ oC} - T_A}{R_{TH_{BA}}}$$

This value of power dissipation can then be used in conjunction with the data shown in Figure 2 to determine the maximum load current (and power) that the converter can deliver in the given thermal condition.

For convenience, power derating curves for an encased converter without a heatsink and with a typical heatsink are provided for each output voltage.

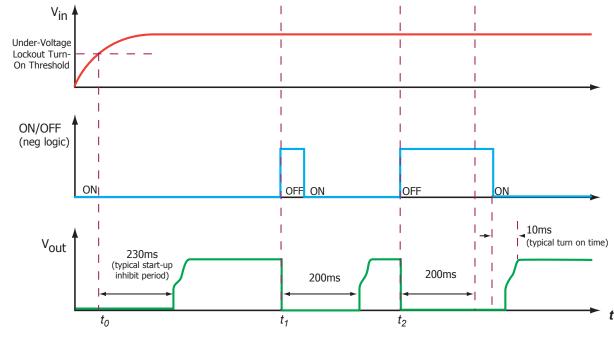
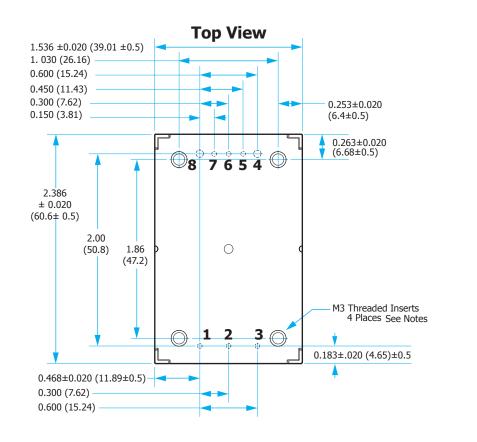
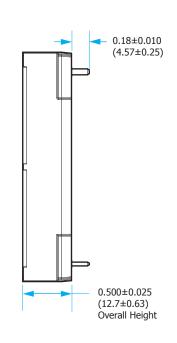


Figure E: Startup Inhibit Period (turn-on time not to scale)

Standards & Qualification Testing


Parameter	Notes & Conditions
STANDARDS COMPLIANCE	
UL 60950-1/R:2011-12	Reinforced Insulation
CAN/CSA-C22.2 No. 60950-1/A1:2011	
EN 60950-1/A12:2011	
CE Marked	2006/95/EC Low Voltage Directive
Note: An external innut fires much shupping he up	and the meant there are the new incompanies. Comparts Sup One for afficial articles are included and any

Note: An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.


Parameter	# Units	Test Conditions
QUALIFICATION TESTING		
Life Test	32	95% rated Vin and load, units at derating point, 1000 hours
Vibration	5	10-55 Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis
Mechanical Shock	5	100g minimum, 2 drops in x, y, and z axis
Temperature Cycling	10	-40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles
Power/Thermal Cycling	5	Toperating = min to max, Vin = min to max, full load, 100 cycles
Design Marginality	5	Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load
Humidity	5	85 °C, 95% RH, 1000 hours, continuous Vin applied except 5 min/day
Solderability	15 pins	MIL-STD-883, method 2003
Altitude	2	70,000 feet (21 km), see Note

Note: A conductive cooling design is generally needed for high altitude applications because of naturally poor convective cooling at rare atmospheres.

Side View

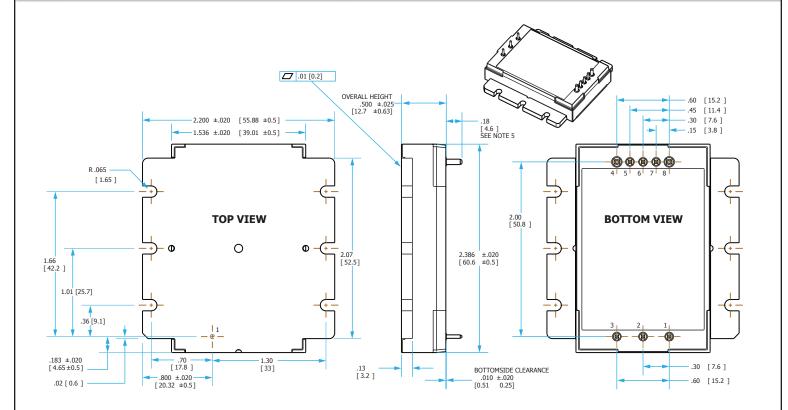
NOTES

- 1)M3 screws used to bolt unit's baseplate to other surfaces (such as a heatsink) must not exceed 0.100" (2.54 mm) depth below the surface of the baseplate.
- 2)Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 3)Baseplate flatness tolerance is 0.004" (.10mm) TIR for surface.
- 4)Pins 1-3, 5-7 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- 5)Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
- 6)All Pins: Material Copper Alloy- Finish (RoHS 6/6) Matte Tin over Nickel plate
- 7)Weight: 3.02 oz. (85.7 g) typical
- 8)All dimensions in inches (mm)

Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm)

- 9)Workmanship: Meets or exceeds IPC-A-610 Class II
- 10)Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness.

PIN DESIGNATIONS

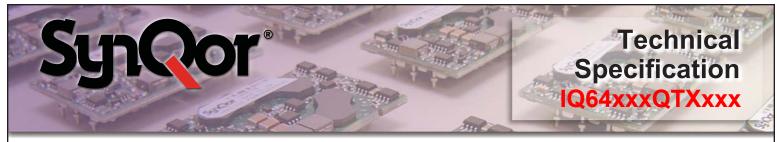

Pin	Name	Function
1	Vin(+)	Positive input voltage
2	ON/OFF	TTL input to turn converter on and off, referenced to Vin(–), with internal pull up.
3	Vin(-)	Negative input voltage
4	Vout(-)	Negative output voltage
5	SENSE(-)	Negative remote sense ¹
6	TRIM	Output voltage trim ²
7	SENSE(+)	Positive remote sense ³
8	Vout(+)	Positive output voltage

Notes:

- 1) SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

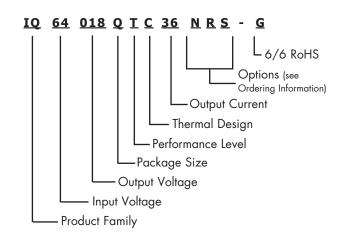
Flanged Mechanical Diagram

NOTES


- Applied torque per screw should not exceed 5in-lb. (3in-lb recommended).
- 2) Baseplate flatness tolerance is 0.01" (.2mm) TIR for surface.
- Pins 1-3, 5-7 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders.
- 5) All Pins: Material Copper Alloy, Finish (RoHS 6/6) Matte Tin over Nickel plate
- 6) Total Weight: 3.12 oz (88.5 g)
- 7) All dimensions in inches (mm)
 - Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm)
- 8) Workmanship: Meets or exceeds IPC-A-610 Class II
- 9) Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness.
- 10) A thermal interface material is required to assure proper heat transfer from the flanged baseplate to the cooling surface. Thermal grease may be used, or materials such as Thermalloy's Grafoil or Bergquist HiFlow and Softflow. Other similar products are available from many heatsink manufacturers.

PIN DESIGNATIONS

Pin	Name	Function
1	Vin(+)	Positive input voltage
2	ON/OFF	TTL input to turn converter on and off, referenced to Vin(–), with internal pull up.
3	Vin(-)	Negative input voltage
4	Vout(-)	Negative output voltage
5	SENSE(-)	Negative remote sense ¹
6	TRIM	Output voltage trim ²
7	SENSE(+)	Positive remote sense ³
8	Vout(+)	Positive output voltage


Notes:

- 1) SENSE(–) should be connected to Vout(–) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

PART NUMBERING SYSTEM

The part numbering system for SynQor's dc-dc converters follows the format shown in the example below.

The first 12 characters comprise the base part number and the last 3 characters indicate available options. The "-G" suffix indicates 6/6 RoHS compliance.

Application Notes

A variety of application notes and technical white papers can be downloaded in pdf format from our **Website**.

RoHS Compliance: The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor's RoHS addendum available at our <u>RoHS Compliance / Lead</u> Free Initiative web page or e-mail us at rohs@synqor.com.

Contact SynQor for further information and to order:

<u>Phone</u> :	978-849-0600
Toll Free:	888-567-9596
Fax:	978-849-0602
<u>E-mail</u> :	power@synqor.com
<u>Web</u> :	www.synqor.com
Address:	155 Swanson Road
	Boxborough, MA 01719
	USA

ORDERING INFORMATION

The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional characters for options. InQor units are only available with 6/6 RoHS compliance indicated by "-G".

Model Number	Input Voltage	Output Voltage	Max Output Current
IQ64018QTw36xyz	64V	1.8V	36.0A
IQ64033QTw27xyz	64V	3.3V	27.0A
IQ64050QTw20xyz	64V	5.0V	20.0A
IQ64070QTw14xyz	64V	7.0V	14.0A
IQ64120QTw08xyz	64V	12.0V	8.0A
IQ64150QTw07xyz	64V	15.0V	6.5A
IQ64240QTw04xyz	64V	24.0V	4.0A
IQ64300QTw03xyz	64V	30.0V	3.2A
IQ64480QTw02xyz	64V	48.0V	2.0A

The following options must be included in place of the **w** x y z spaces in the model numbers listed above.

Options Description					
Thermal Design	Enable Logic Pin Style		Feature Set		
w	X	У	Z		
C - Encased V - Encased with Flanged Baseplate	N - Negative	R - 0.180"	S - Standard		

Not all combinations make valid part numbers, please contact SynQor for availability.

PATENTS

SynQor holds the following U.S. patents, one or more of which apply to each product listed in this document. Additional patent applications may be pending or filed in the future.

5,999,417	6,222,742	6,545,890	6,577,109	6,594,159	6,731,520
6,894,468	6,896,526	6,927,987	7,050,309	7,072,190	7,085,146
7,119,524	7,269,034	7,272,021	7,272,023	7,558,083	7,564,702
7,765,687	7,787,261	8,023,290	8,149,597	8,493,751	

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

Information furnished by SynQor is believed to be accurate and reliable. However, no responsibility is assumed by SynQor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SynQor.