SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

- Meets or Exceeds TIA/EIA-232-F and ITU **Recommendation V.28**
- **Operates From a Single 5-V Power Supply** With 1.0-μF Charge-Pump Capacitors
- Operates Up To 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- **ESD Protection Exceeds JESD 22** - 2000-V Human-Body Model (A114-A)
- **Upgrade With Improved ESD (15-kV HBM)** and 0.1-μF Charge-Pump Capacitors is **Available With the MAX202**
- **Applications**
 - TIA/EIA-232-F, Battery-Powered Systems, Terminals, Modems, and Computers

MAX232I...D. DW. OR N PACKAGE (TOP VIEW) 16 V_{CC} V_{S+} [] 2 15 **∏** GND C1− [3 14 T10UT C2+ [] 4 13 R1IN C2− ¶ 5 12 R10UT V_{S−} [] 6 11 T1IN T20UT [] 7 10 T2IN R2IN **1** 8 9 R20UT

MAX232 . . . D, DW, N, OR NS PACKAGE

description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC™ library.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (N)	Tube of 25	MAX232N	MAX232N
	COIC (D)	Tube of 40	MAX232D	MANAGO
0°C to 70°C	SOIC (D)	Reel of 2500	MAX232DR	MAX232
	0010 (DM)	Tube of 40	MAX232DW	MANAGO
	SOIC (DW)	Reel of 2000	MAX232DWR	MAX232
	SOP (NS)	Reel of 2000	MAX232NSR	MAX232
	PDIP (N)	Tube of 25	MAX232IN	MAX232IN
	2010 (7)	Tube of 40	MAX232ID	MANAGON
-40°C to 85°C	SOIC (D)	Reel of 2500	MAX232IDR	MAX232I
	SOIC (DW)	Tube of 40	MAX232IDW	MAX232I
	SOIC (DW)	Reel of 2000	MAX232IDWR	IVIAA2321

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinASIC is a trademark of Texas Instruments.

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Input supply voltage range, V _{CC} (see Note 1)		–0.3 V to 6 V
Positive output supply voltage range, V _{S+}		\dots V _{CC} – 0.3 V to 15 V
Negative output supply voltage range, V _S		0.3 V to -15 V
Input voltage range, V _I : Driver		\dots -0.3 V to V _{CC} + 0.3 V
Receiver		±30 V
Output voltage range, V _O : T1OUT, T2OUT		$V_{S-} - 0.3 \text{ V to } V_{S+} + 0.3 \text{ V}$
R10UT, R20UT		\dots -0.3 V to V _{CC} + 0.3 V
Short-circuit duration: T1OUT, T2OUT		Unlimited
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	D package	73°C/W
	DW package	57°C/W
	N package	67°C/W
	NS package	64°C/W
Operating virtual junction temperature, T _J		150°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage (T1IN,T2IN)		2			V
V_{IL}	Low-level input voltage (T1IN, T2IN)				8.0	V
R1IN, R2IN	Receiver input voltage				±30	V
т.	Operating free air temperature	MAX232	0		70	°C
TA	Operating free-air temperature MA	MAX232I	-40		85	-0

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS		MIN	TYP‡	MAX	UNIT
lo	CC Supply current	V _{CC} = 5.5 V, T _A = 25°C	All outputs open,		8	10	mA

 \ddagger All typical values are at V_{CC} = 5 V and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

^{2.} Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4)

PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
Vон	High-level output voltage	T1OUT, T2OUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$	5	7		V
VOL	Low-level output voltage‡	T1OUT, T2OUT	$R_L = 3 \text{ k}\Omega \text{ to GND}$		-7	-5	V
r _O	Output resistance	T1OUT, T2OUT	$V_{S+} = V_{S-} = 0, V_{O} = \pm 2 \text{ V}$	300			Ω
IOS§	Short-circuit output current	T1OUT, T2OUT	$V_{CC} = 5.5 \text{ V}, \qquad V_{O} = 0$		±10		mA
IIS	Short-circuit input current	T1IN, T2IN	V _I = 0			200	μΑ

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Note 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Driver slew rate	R_L = 3 kΩ to 7 kΩ, See Figure 2			30	V/µs
SR(t)	Driver transition region slew rate	See Figure 3		3		V/µs
	Data rate	One TOUT switching		120		kbit/s

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4)

PARAMETER			TEST C	CONDITIONS	MIN	TYP [†]	MAX	UNIT
VOH	High-level output voltage	R1OUT, R2OUT	$I_{OH} = -1 \text{ mA}$		3.5			V
VOL	Low-level output voltage [‡]	R1OUT, R2OUT	$I_{OL} = 3.2 \text{ mA}$				0.4	V
V _{IT+}	Receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C		1.7	2.4	V
V _{IT} _	Receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C	0.8	1.2		V
V _{hys}	Input hysteresis voltage	R1IN, R2IN	V _{CC} = 5 V		0.2	0.5	1	V
rį	Receiver input resistance	R1IN, R2IN	V _{CC} = 5,	T _A = 25°C	3	5	7	kΩ

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Note 4 and Figure 1)

	PARAMETER	TYP	UNIT
tPLH(R)	Receiver propagation delay time, low- to high-level output	500	ns
t _{PHL(R)}	Receiver propagation delay time, high- to low-level output	500	ns

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.

[‡] The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

[§] Not more than one output should be shorted at a time.

[‡] The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

NOTE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V.