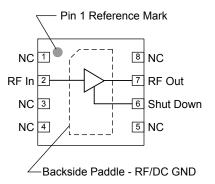


Applications

- Repeaters
- Mobile Infrastructure
- LTE / WCDMA / CDMA / GSM
- General Purpose Wireless
- TDD or FDD systems


Product Features

- 50–4000 MHz Operating Range
- 0.65 dB Noise Figure @ 1900 MHz
- 16.5 dB Gain @ 1900 MHz
- +37 dBm Output IP3
- +22.5 dBm P1dB
- Shut-down capability
- Unconditionally stable
- 50 Ohm Cascadable Gain Block
- +5V Single Supply, 115 mA Current
- 2x2 mm 8 Pin DFN plastic package

2x2 mm 8 Pin DFN Package

Functional Block Diagram

General Description

The TQP3M9035 is a high-linearity, low noise gain block amplifier in a low-cost surface-mount package. At 1900 MHz, the amplifier typically provides 16.5 dB gain, +37 dBm OIP3, and 0.65 dB Noise Figure. The LNA is also designed to be broadband without the requirement for external matching. The device is housed in a lead-free/green/RoHS-compliant industry-standard 2x2 mm package.

The TQP3M9035 has the benefit of having high linearity while also providing very low noise across a broad range of frequencies. This allows the device to be used in both receive and transmit chains for high performance systems. The amplifier is internally matched using a high performance E-pHEMT process and only requires an external RF choke and blocking/bypass capacitors for operation from a single +5V supply. The low noise amplifier integrates a shut-down biasing capability to allow for operation for TDD applications.

The TQP3M9035 covers the 50-4000 MHz frequency band and is targeted for wireless infrastructure or other applications requiring high linearity and/or low noise figure.

Pin Configuration

Pin #	Label
1, 3, 4, 5, 8	No Connect or GND
2	RF In
6	Shut Down
7	RF Out
Backside Paddle	RF/DC GND

Ordering Information

- 1 of 11 -

<

Standard T/R size = 2500 pieces on a 7" reel.

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to 150°C
Supply Voltage (V _{DD})	+6 V
RF Input Power, CW, 50Ω ,T = 25° C	+23 dBm

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Supply Voltage (V _{DD})	+4.75	+5	+5.25	V
T _{CASE}	-40		+85	°C
T _J (for >10 ⁶ hours MTTF)			190	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

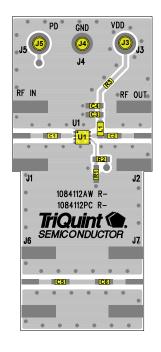
Test conditions unless otherwise noted: +25°C, V_{DD} =+5V, 50 Ω system.

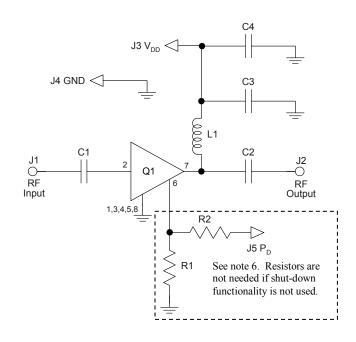
Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		50		4000	MHz
Test Frequency			1900		MHz
Gain		15	16.5	18	dB
Input Return Loss			13		dB
Output Return Loss			10		dB
Output P1dB		+20	+23		dBm
Output IP3	Pout=+4 dBm/tone, Δf=1 MHz	+32.5	+37		dBm
Noise Figure			0.65	1.0	dB
Power Shutdown Control	On state	0		0.8	V
(Pin 6)	Off state (Power down)	3		V_{DD}	V
Current	On state		115	150	mA
Current, I _{DD}	Off state (Power down)		3		mA
Shutdown pin current, I _{SD}	V _{PD} ≥ 3 V		100		μA
Thermal Resistance, θ_{jc}	channel to case			50	°C/W

S-Parameters

Test conditions unless otherwise noted: V_{DD}=+5 V, I_{DD}=115 mA (typ.), Temp=+25°C, 50 Ohm system

Freq (GHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-11.5	-43.9	28.8	165.0	-31.8	13.5	-22.0	-106.8
100	-13.8	-43.3	28.2	161.3	-31.5	8.5	-26.5	172.1
200	-14.8	-50.7	27.6	151.4	-31.4	6.5	-20.1	99.9
400	-15.0	-74.6	26.1	132.1	-31.4	9.2	-14.9	57.7
600	-15.0	-93.2	24.5	116.9	-31.3	13.3	-13.1	35.6
800	-14.9	-106.9	23.0	104.8	-30.9	17.6	-12.2	19.5
1000	-15.0	-117.2	21.6	94.8	-30.3	21.5	-11.8	6.5
1200	-15.0	-125.4	20.4	86.1	-29.7	23.5	-11.6	-5.1
1400	-15.1	-131.8	19.4	78.2	-29.0	25.1	-11.4	-16.0
1600	-15.2	-137.5	18.5	71.0	-28.3	25.8	-11.2	-26.4
1800	-15.4	-142.3	17.6	64.2	-27.6	25.5	-11.0	-36.2
2000	-15.6	-147.1	16.9	57.7	-27.0	25.1	-10.7	-45.5
2200	-15.8	-151.7	16.2	51.4	-26.4	24.4	-10.4	-54.5
2400	-15.9	-156.6	15.6	45.4	-25.9	22.8	-10.1	-62.8
2600	-16.1	-161.5	15.0	39.5	-25.4	21.2	-9.7	-70.6
2800	-16.1	-166.5	14.5	33.6	-25.0	19.3	-9.3	-77.8
3000	-16.5	-174.6	14.0	27.9	-24.6	17.4	-8.7	-82.9
3200	-16.4	179.5	13.6	22.3	-24.2	15.1	-8.3	-88.4
3400	-16.0	176.3	13.2	16.8	-23.8	12.8	-8.0	-94.5
3600	-15.4	173.5	12.8	11.2	-23.5	10.3	-7.8	-100.7
3800	-14.8	170.9	12.5	5.6	-23.2	7.9	-7.6	-106.8
4000	-14.2	169.0	12.2	-0.1	-22.9	4.7	-7.4	-113.2


Noise Parameters


Test conditions unless otherwise noted: V_{DD} =+5 V, I_{DD} =115 mA (typ.), Temp=+25°C, 50 Ohm system

Freq (MHz)	NF _{min} (dB)	MagOpt (mag)	AngOpt (deg)	Rn (Ω)
700	0.41	0.100	118	0.046
1100	0.50	0.127	140	0.048
1500	0.59	0.113	165	0.060
1900	0.49	0.229	166	0.045
2300	0.59	0.267	179	0.048
2700	0.74	0.300	-166	0.051

TQP3M9035-PCB Evaluation Board

Notes:

- 1. See Evaluation Board PCB Information section for material and stack-up.
- 2. R3 (0 Ω jumper) is not shown on the schematic and may be replaced with copper trace in the target application layout.
- 3. All components are of 0402 size unless stated on the schematic.
- 4. C1, C2, and C3 are non-critical values. The reactive impedance should be as low as possible at the frequency of operation for optimal performance.
- 5. The L1 value is non-critical and needs to provide high reactive impedance at the frequency of operation.
- 6. R1 and R2 are optional and do not need to be loaded if the shut-down functionality is not needed; i.e. FDD applications. If R1 and R2 are not loaded, the LNA will operate in its standard "ON" state.
- 7. A through line is included on the evaluation board to de-embed the board losses.

Bill of Material - TQP3M9035-PCB

Reference Des.	Value	Description	Manuf.	Part Number
N/A	N/A	Printed Circuit Board	TriQuint	1084112
U1	n/a	High Linearity LNA Gain Block	TriQuint	TQP3M9035
R1	10K Ω	Resistor, Chip, 0402, 5%, 1/16W	various	various
R2	33Κ Ω	Resistor, Chip, 0402, 5%, 1/16W	various	various
R3	0 Ω	Resistor, Chip, 0402, 5%, 1/16W	various	various
L1 ⁽¹⁾	68 nH	Inductor, 0603, 5%, Ceramic	various	various
C4	1.0 uF	Cap., Chip, 0402, 10%, 10V, X5R	various	various
C1, C2, C3, C5, C6 ⁽¹⁾	100 pF	Cap., Chip, 0402, 5%, 50V, NPO/COG	various	various
J3, J4, J5	n/a	Solder Turret	various	various

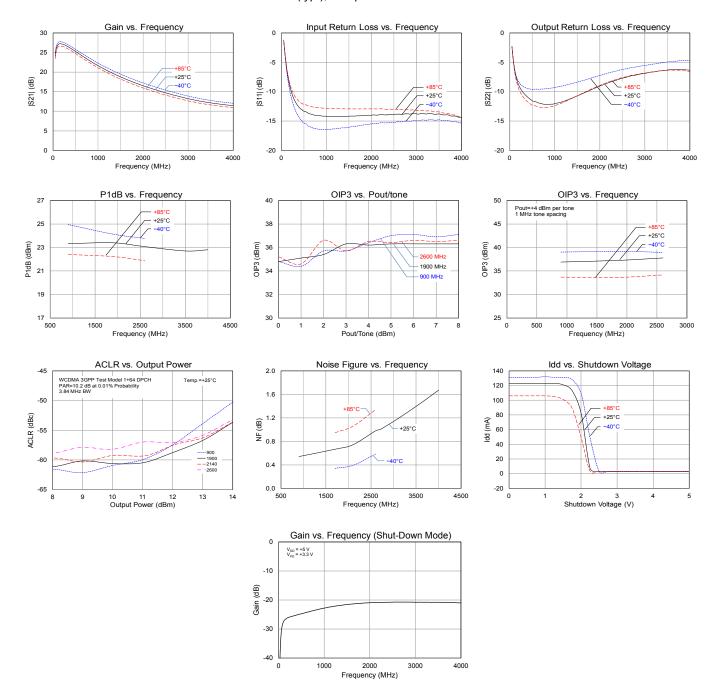
Notes:

1. For 50-500 MHz operation set L1=82 nH and C1, C2, C5, C6=1000 pF.

Typical Performance TQP3M9035-PCB $V_{DD} = +5 V$

Test conditions unless otherwise noted: I_{DD}=115 mA (typ.), Temp=+25°C

Parameter	Conditions	Typical Value			Units	
Frequency		900	1900	2600	3500	MHz
Gain		22.0	16.5	14.0	12.0	dB
Input Return Loss		14	14	14	14	dB
Output Return Loss		13	10	8	7	dB
Output P1dB		+23	+23	+23		dBm
Output IP3	Pout= +4 dBm/tone, Δf=1 MHz	+37.2	+37.0	+37.3		dBm
Noise figure (1)		0.55	0.65	1.0	1.4	dB

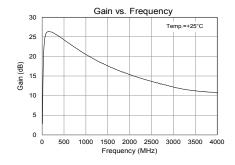

Notes:

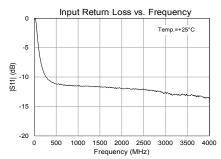
^{1.} Noise figure data shown in the table above is de-embedded from the eval board loss.

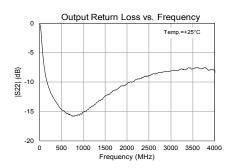
Performance Plots - TQP3M9035-PCB V_{DD} = +5 V

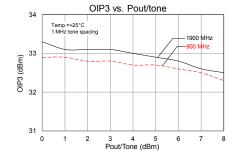
Test conditions unless otherwise noted: I_{DD}=115 mA (typ.), Temp=+25°C

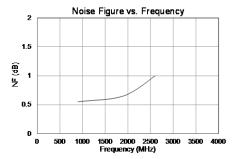
Typical Performance – TQP3M9035-PCB $V_{DD} = +3.3 \text{ V}$


Test conditions unless otherwise noted: IDD=67 mA (typ.), Temp=+25°C


Parameter	Conditions	Typical Value Uni		
Frequency		900	1900	MHz
Gain		21.2	15.8	dB
Input Return Loss		11.4	11.9	dB
Output Return Loss		15.6	10.6	dB
Output P1dB		+19	+18.8	dBm
Output IP3	Pout= +5 dBm/tone, Δf=1 MHz	+32.7	+33	dBm
Noise figure (1)		0.55	0.65	dB


Notes:


Performance Plots - TQP3M9035-PCB V_{DD} = +3.3 V

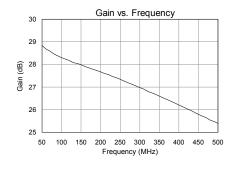

Test conditions unless otherwise noted: I_{DD} = 67 mA, T_{CASE} = +25°C, 50 Ω system

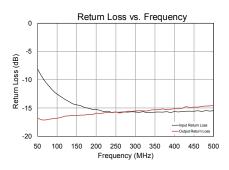
^{1.} Noise figure data shown in the table above is de-embedded from the eval board loss.

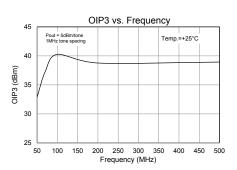
50-500 MHz IF Reference Design

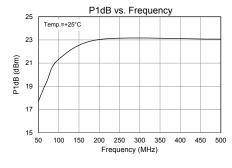
TQP3M9035 performance may be optimized for IF operation below 500 MHz by making suitable adjustments to the value of the bias inductor L1 and the DC blocking capacitors C1 and C2. When using the TriQuint evaluation board be sure to match the value of C5 and C6 to that of C1 and C2 for accurate loss de-embedding.

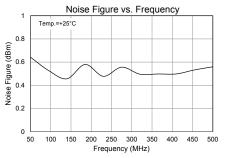
Typical Performance - 50-500 MHz

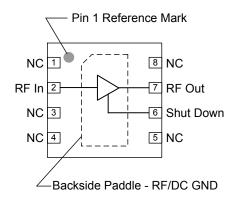

Test conditions unless otherwise noted: L1=82 nH, C1-C2, C5-C6=1000 pF, V_{DD}=+5V, I_{DD}=115 mA (typ.), Temp=+25°C


Parameter	Conditions		Typica	l Value		Units
Frequency		50	100	200	500	MHz
Gain		28.8	28.3	27.7	25.4	dB
Input Return Loss		8	12.5	15.2	15.4	dB
Output Return Loss		16.7	16.8	15.9	14.5	dB
Output P1dB		+17.7	+21.3	+23	+23.1	dBm
Output IP3	Pout= +5 dBm/tone, Δf=1 MHz	+32.9	+40.3	+38.8	+38.9	dBm
Noise figure (1)		0.64	0.52	0.56	0.56	dB

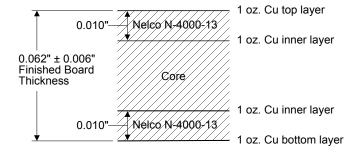

Notes:

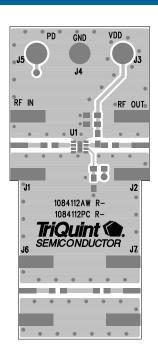

Performance Plots - 50-500 MHz


Test conditions unless otherwise noted: : L1=82 nH, C1-C2, C5-C6=1000 pF, V_{DD}=+5V, I_{DD}=115 mA (typ.), Temp=+25°C



^{1.} Noise figure data shown in the table above is de-embedded from the eval board loss.

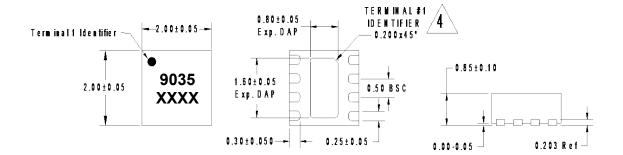

Pin Configuration and Description


Pin No.	Label	Description
2	RF In	RF Input pin. A DC Block is required.
6	Shut Down	A high voltage turns off the device. If the pin is not connected or is less than 1V, then the device will operate under its normal operating condition.
7	RF Out / DCBias	RF Output pin. DC bias will also need to be injected through a RF bias choke/inductor for operation.
1, 3, 4, 5, 8	NC	No electrical connection. Provide grounded land pads for PCB mounting integrity.
Backside Paddle	RF/DC GND	RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance; see PCB Mounting Pattern for suggested footprint.

Evaluation Board PCB Information

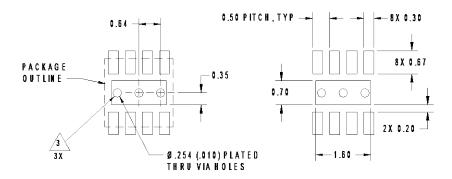
TriQuint PCB 1084112 Material and Stack-up

50 ohm line dimensions: width = .031", spacing = .035"



Mechanical Information

Package Marking and Dimensions


Marking: Part number – 9035 Lot Code – XXXX

NOTES:


- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

PCB Mounting Pattern

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.



Product Compliance Information

ESD Sensitivity Ratings

ESD Rating: Class 1A

Value: Passes ≥ 250 V to < 500 V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes ≥ 1000 V

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating

MSL Rating: Level 1

Test: 260°C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.503.615.9000 Email: <u>info-sales@tqs.com</u> Fax: +1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.