DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT

μ PC3237TK

LOW NOISE WIDE BAND SILICON GERMANIUM MMIC AMPLIFIER FOR MOBILE COMMUNICATIONS

DESCRIPTION

The µPC3237TK is a silicon germanium (SiGe) monolithic integrated circuit designed as low noise amplifier for the mobile digital TV etc. This device exhibits low noise figure and high power gain characteristics.

This package is 6-pin lead-less minimold, suitable for surface mount.

This IC is manufactured using our 50 GHz fmax UHS2 (Ultra High Speed Process) SiGe bipolar process.

FEATURES

· Supply voltage : Vcc = 2.4 to 3.3 V (2.8 V TYP.) Low current consumption : Icc = 5 mA TYP. @ Vcc = 2.8 V Low Noise : NF = 1.4 dB TYP. @ f = 470 MHz : NF = 1.5 dB TYP. @ f = 770 MHz

: $G_P = 15.3 \text{ dB TYP.} @ f = 470 \text{ MHz}$

Power gain : $G_P = 13.5 \text{ dB TYP.} @ f = 770 \text{ MHz}$

High-density surface mounting: 6-pin lead-less minimold package ($1.5 \times 1.1 \times 0.55$ mm)

APPLICATIONS

Low noise amplifier for the mobile digital TV etc.

ORDERING INFORMATION

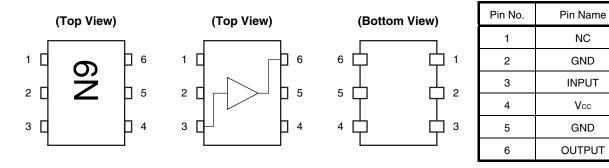
Part Number	Order Number	Package	Marking	Supplying Form
μPC3237TK-E2	μPC3237TK-E2-A	6-pin lead-less minimold (1511 PKG) (Pb-Free)		Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office

Part number for sample order: μ PC3237TK

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

NC

 V_{CC}

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	3.6	V
Circuit Current	Icc	T _A = +25°C	10	mA
Power Dissipation	Po	T _A = +85°C Note	203	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	T _{stg}		-55 to +150	°C
Input Power	Pin	T _A = +25°C	+8	dBm

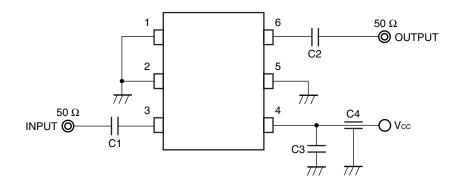
Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.4	2.8	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = 2.8 V, Z_S = Z_L = 50 Ω , unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No input signal	3.5	5	7	mA
Power Gain 1	G _P 1	f = 470 MHz, P _{in} = -30 dBm	13.0	15.3	17.5	dB
Power Gain 2	G _P 2	f = 770 MHz, Pin = -30 dBm	11.0	13.5	16.0	dB
Noise Figure 1	NF1	f = 470 MHz	-	1.4	1.9	dB
Noise Figure 2	NF2	f = 770 MHz	_	1.5	2.0	dB
Input Return Loss 1	RLin1	f = 470 MHz, P _{in} = -30 dBm	6.5	9.5	_	dB
Input Return Loss 2	RLin2	f = 770 MHz, P _{in} = -30 dBm	5.5	8.5	-	dB
Output Return Loss 1	RLout1	f = 470 MHz, P _{in} = -30 dBm	9	14	-	dB
Output Return Loss 2	RLout2	f = 770 MHz, P _{in} = -30 dBm	10	15	_	dB
Isolation 1	ISL1	f = 470 MHz, P _{in} = -30 dBm	17	22	-	dB
Isolation 2	ISL2	f = 770 MHz, Pin = -30 dBm	16	21	-	dB
Gain 1 dB Compression Output Power 1	Po (1 dB) 1	f = 470 MHz	-8	-5.5	-	dBm
Gain 1 dB Compression Output Power 2	Po (1 dB) 2	f = 770 MHz	-8	-5.5	_	dBm

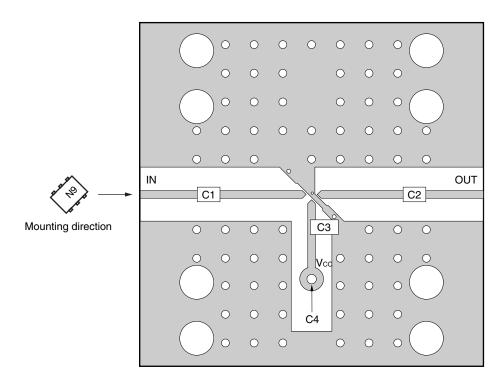

STANDARD CHARACTERISTICS FOR REFERENCE

(T_A = +25°C, V_{CC} = 2.8 V, Z_S = Z_L = 50 Ω , unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference Value	Unit
Saturated Output Power 1	Po (sat) 1	f = 470 MHz, P _{in} = +2 dBm	+1.3	dBm
Saturated Output Power 2	Po (sat) 2	f = 770 MHz, P _{in} = +2 dBm	+1.3	dBm
Input 3rd Order Distortion Intercept Point 1	IIP₃1	f1 = 470 MHz, f2 = 471 MHz	-10.5	dBm
Input 3rd Order Distortion Intercept Point 2	IIP ₃ 2	f1 = 770 MHz, f2 = 771 MHz	-9.5	dBm
Output 3rd Order Distortion Intercept Point 1	OIP₃1	f1 = 470 MHz, f2 = 471 MHz	+4.8	dBm
Output 3rd Order Distortion Intercept Point 2	OIP ₃ 2	f1 = 770 MHz, f2 = 771 MHz	+4.0	dBm
K factor 1	K1	f = 470 MHz	1.15	-
K factor 2	K2	f = 770 MHz	1.20	-

3

TEST CIRCUIT



The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

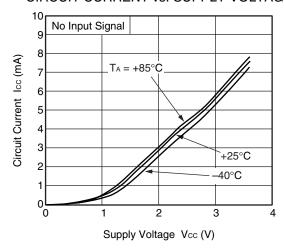
COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

	Туре	Value
C1, C2	Chip Capacitor	100 pF
C3	Chip Capacitor	1 000 pF
C4	Feed-through Capacitor	1 000 pF

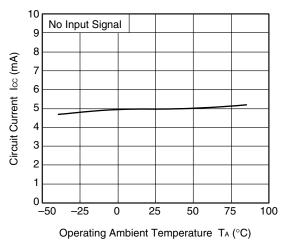
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Notes

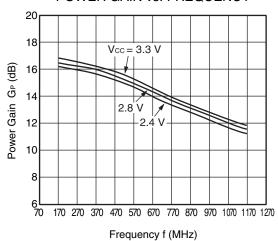
1. $30 \times 30 \times 0.4$ mm double sided copper clad FR-4 board.


2. Back side: GND pattern

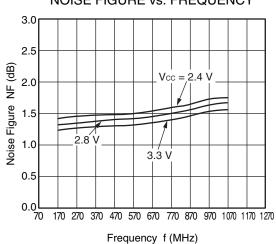
3. Au plated on pattern

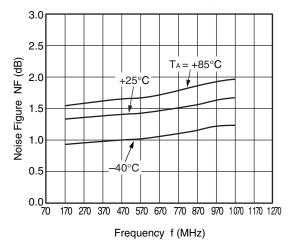

4. O: Through holes

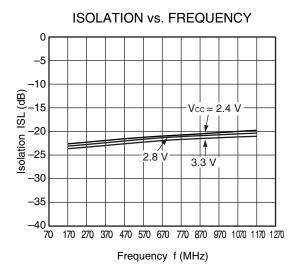
TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = 2.8 V, Zs = Z_L = 50 Ω , unless otherwise specified)

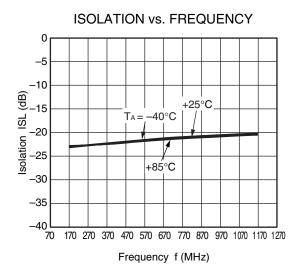

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

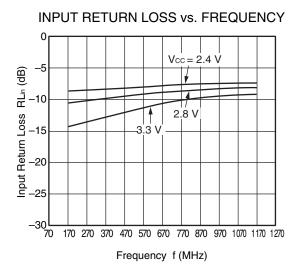
CURCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

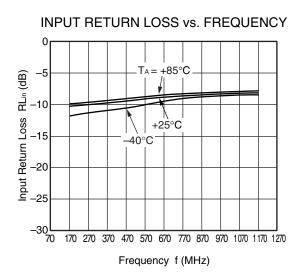

POWER GAIN vs. FREQUENCY


POWER GAIN vs. FREQUENCY

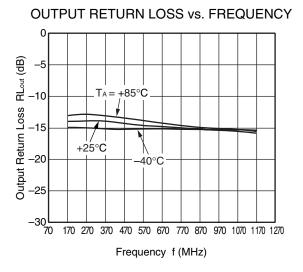

NOISE FIGURE vs. FREQUENCY

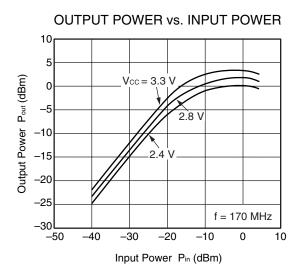


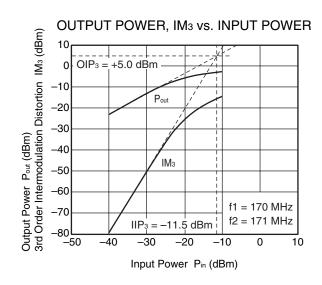

NOISE FIGURE vs. FREQUENCY

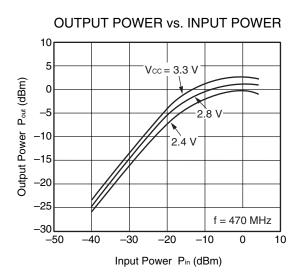


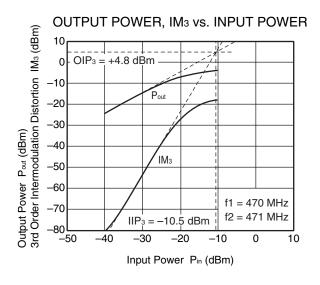

Remark The graphs indicate nominal characteristics.

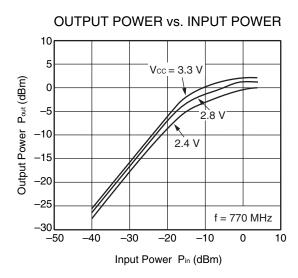


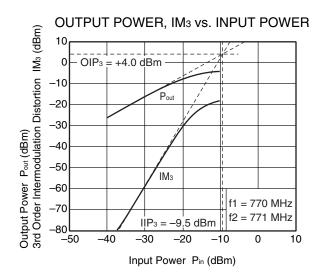


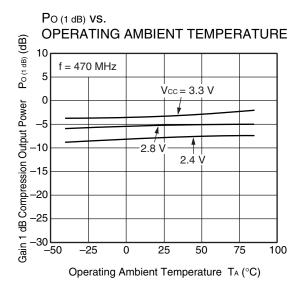


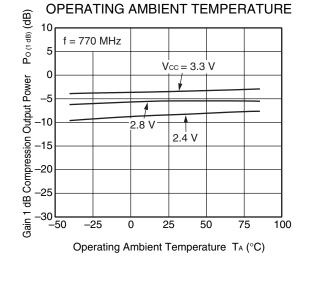


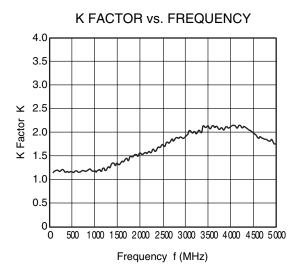



Remark The graphs indicate nominal characteristics.

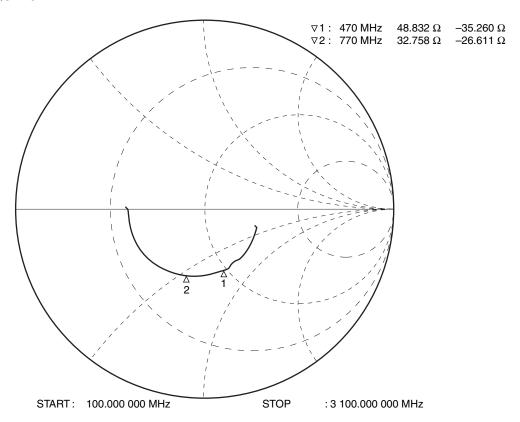


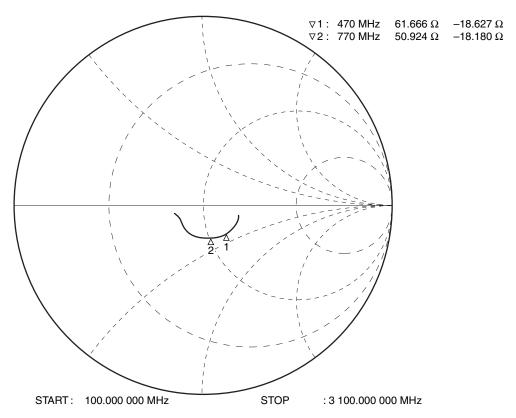






Remark The graphs indicate nominal characteristics.

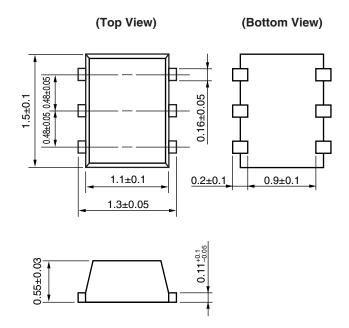

Po (1 dB) **vs**.


Remark The graphs indicate nominal characteristics.

S-PARAMETERS (T_A = +25°C, V_{CC} = 2.8 V, monitored at connector on board)

S₁₁-FREQUENCY

S22-FREQUENCY



10

Data Sheet PU10675EJ01V0DS

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).

 All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the Vcc line.
- (4) The DC cut capacitor should be attached to Input and Output pin.
- (5) Pin 1 (NC) should be connected to the ground pattern.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

NEC μ PC3237TK

The information in this document is current as of July, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
 "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).