
Key Features

• 1 ~ 300 MHz

- 0.5 ~ 1.5 dB Noise Figure
- 22.0 dBm Output P_{1dB}
- 28.0 dB Gain
- +/- 0.20 dB Gain Flatness
- 1.5:1 VSWR
- Single power supply
- >34 years MTBF
- RoHS compliant
- Meet MIL-STD-202

Product Description

CAUTION:

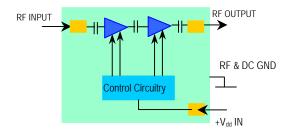
Applications

- Radio Infrastructures
- SW Communications
- FM
- Measurement
- Fixed Wireless

Specifications

Summary of the electrical specifications WBA0001A/B at room temperature

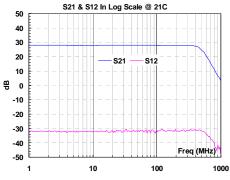
housing.

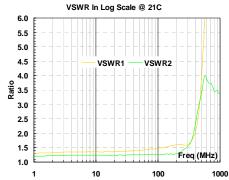

Index	Testing Item	Symbol	Test Constraints		Nom	Max	Unit
1	Gain	S ₂₁	1 – 300 MHz	26	28	30	dB
2	Gain Variation	ΔG	1 – 300 MHz		+/- 0.20	+/-0.5	dB
3	Noise Figure	NF	10 – 300 MHz	0.45	0.80	2.0	dB
4	Input & Output VSWR	SWR ₁	1 – 300 MHz		1.5:1	2:1	Ratio
5	Output VSWR	SWR ₂	1 – 300 MHz		1.5:1	2:1	Ratio
6	Reverse Isolation	S ₁₂	1 – 300 MHz		30		dB
7	Output Power 1dB compression Point	P _{1dB}	1 – 300 MHz	19	22		dBm
8	Output Third Interception Point	OIP ₃	1 – 300 MHz, 1 MHz Separation, 0 dBm each tone	30	33		dBm
9	Current Consumption	I _{dd}	V_{dd}		75		mA
10	Power Supply Voltage	V_{dd}	WBA0001A		+5.0	+5.3	V
			WBA0001B	+9	+15	+16	V
11	Thermal Resistance	R _{th,c}	Junction to case			40	°C/W
12	Operating Temperature	To		-40		+85	°C
13	Maximum Average RF Input Power	P _{IN. MAX}	DC – 6 GHz			15	dBm

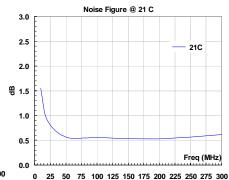
Absolute Maximum Ratings

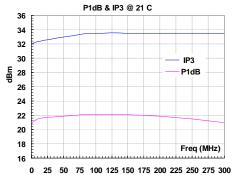
Parameters	Units	Ratings
DC Power Supply Voltage	V	6 (+16 V for WBA0001B)
Drain Current	mA	150
Total Power Dissipation	W	1.2
RF Input Power	dBm	15
Channel Temperature	°C	150
Storage Temperature	°C	-55 ~ 125
Operating Temperature	°C	-40 ~ 85
Thermal Resistance	°C/W	40

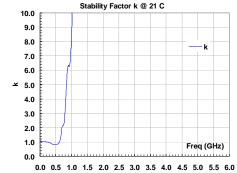
Operation of this device above any one of these parameters may cause permanent damage.

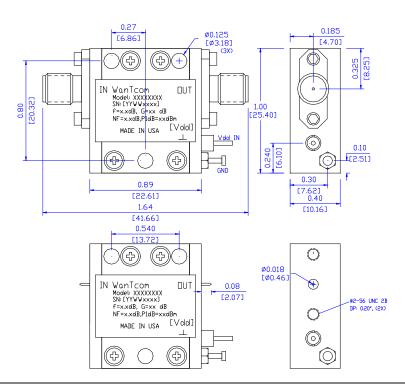

Functional Block Diagram




Ordering Information


Model Number	Vdd
WBA0001A	+5.0V
WBA0001B	+9 ~ +16V


Typical Data:



Outline, WP-11 Housing

UNITS: INCH [mm]

[mm]
BODY: Brass
Finish: Gold Plating

 $\begin{array}{ll} \text{RF Connector:} & \text{SMA F Gold Field} \\ \text{Replaceable} \\ \text{V}_{\text{dd}} \, \text{PWR:} & \text{Feed through} \end{array}$

Application Notes:

A. SMA Torque Wrench Selection

Always use a torque wrench with 5 ~ 6 inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. DC Power Line Connection

Strip the insulation layer at the end of DC power supply wire. The stripped distance should be in the range of 0.100" to 0.200". The $24 \sim 26$ American Wire Gauge wire is suitable. Wound the stripped terminal wire about 1 to 2 turns on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering area by Q-tip with alcohol to remove the flux and residue.

Repeat the process to solder the DC return wire on the ground turret.

C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.
