WLA95-1035A 9.3 ~ 9.6 GHz LOW NOISE MEDIUM POWER AMPLIFIER

Product Description

WLA95-1035A integrates WanTcom proprietary

low noise amplifier technology, high frequency

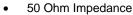
micro electronic assembly techniques, and high

reliability design to realize optimum low noise

figure, wideband, high linearity, and exceptional

gain flatness performances together. With single

DC operation, the amplifier has optimal input and


output matching in the specified frequency range

at 50-Ohm impedance system. The amplifier has

standard SMA connectorized WP-11 Gold plated

Preliminary

Key Features

- 9.3 ~ 9.6 GHz
- 2.0 dB Noise Figure
- 21.0 dBm Output P_{1dB}
- 10.0 dB Gain
- +/- 0.20 dB Gain Flatness
- 1.5:1 VSWR
- Single Power Supply
- >34 Years MTBF
- RoHS Compliant
- Meet MIL-STD-202g

Specifications

Summary of the electrical specifications WLA95-1035A at room temperature

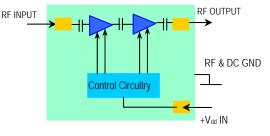
housing.

RoHS

Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	9.3 – 9.6 GHz	9	10	10.5	dB
2	Gain Variation	ΔG	9.3 – 9.6 GHz		+/- 0.20	+/-0.3	dB
3	Noise Figure	NF	9.3 – 9.6 GHz		2.0	2.5	dB
4	Input & Output VSWR	SWR ₁	9.3 – 9.6 GHz		1.4:1	1.5:1	Ratio
5	Output VSWR	SWR ₂	9.3 – 9.6 GHz		1.4:1	1.5:1	Ratio
6	Reverse Isolation	S ₁₂	9.3 – 9.6 GHz		23		dB
7	Output Power 1dB Compression Point	P _{1dB}	9.3 – 9.6 GHz	18	21		dBm
8	Current Consumption	l _{dd}	V _{dd}		80		mA
9	Power Supply Voltage	V _{dd}	WLA95-1035A	+8.7	+9.0	+9.3	N/
			WLA95-1035B	+12		+16	V
10	Thermal Resistance	R _{th,c}	Junction to case			40	°C/W
11	Operating Temperature	To		-40		+85	°C
12	Maximum CW RF Input Power	PIN, MAX	DC – 6 GHz			15	dBm

Absolute Maximum Ratings

Parameters	Units	Ratings
DC Power Supply Voltage	V	-0.5, 10 (+16 V for WLA95-1035A)
Drain Current	mA	100
Total Power Dissipation	W	1.0
CW RF Input Power	dBm	15
Channel Temperature	°C	150
Storage Temperature	°C	-55 ~ 125
Operating Temperature	°C	-40 ~ 85
Thermal Resistance	°C/W	40


Operation of this device above any one of these parameters may cause permanent damage.

Ordering Information

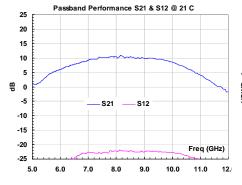
Model Number	Vdd
WLA95-1035A	+9.0V
WLA95-1035B	+12 ~ +16V

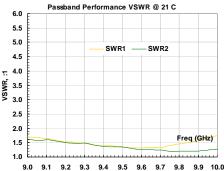
Specifications and information are subject to change without notice.

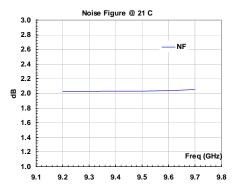
Functional Block Diagram

Applications

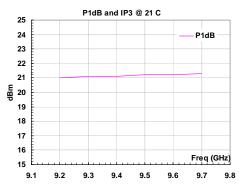
 \mathfrak{G}

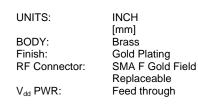

ELECTROSTATIC DISCHARGE

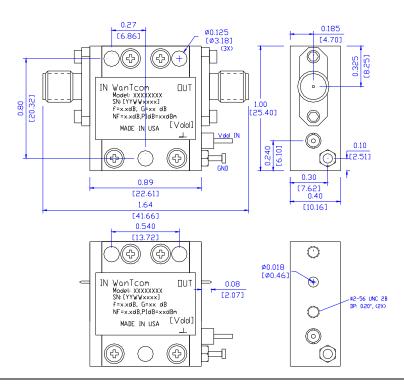

- X-Band Radar
- Fixed Wireless
- Measurement



Typical Data:






REV A

February 2015

Outline, WP-11 Housing

Specifications and information are subject to change without notice.

Application Notes:

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. DC Power Line Connection

Strip the insulation layer at the end of DC power supply wire. The stripped distance should be in the range of 0.100" to 0.200". The $24 \sim 26$ American Wire Gauge wire is suitable. Wound the stripped terminal wire about 1 to 2 turns on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering area by Q-tip with alcohol to remove the flux and residue.

Repeat the process to solder the DC return wire on the ground turret.

C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.

Specifications and information are subject to change without notice.