Key Features

- 50 Ohm Impedance
- 1.2 ~ 1.6 GHz
- 1.0 dB Noise Figure
- 18.5 dB Gain
- +/-0.2 dB Gain Flatness
- 14.0 dBm P_{1dB}
- 1.35:1 VSWR
- Single Power Supply
- >34 Years MTBF
- RoHS compliant

Product Description

WLLA14-1930A integrates WanTcom proprietary low noise amplifier technology, high frequency micro electronic assembly techniques, and high reliability design to realize optimum low noise figure, wideband, high linearity, and unconditional stable performances together. With single DC voltage operation, the amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard SMA connectorized WP-5 gold plated housing.

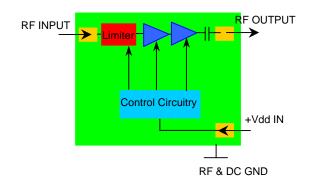
The amplifier is designed to meet the rugged standard of MIL-STD-202.

Applications

- Mobile Infrastructures
- GPS
- CATV/DBS
- Defense
- Security System
- Measurement
- Fixed Wireless

Specifications

Summary of the electrical specifications WLLA14-1930A at room temperature

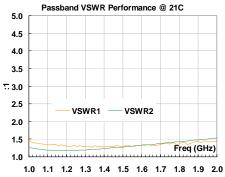

Index	Testing Item	Symbol	Test Constraints		Nom	Max	Unit
1	Gain	S ₂₁	1.2 – 1.6 GHz	17	18.5	20	dB
2	Gain Variation	ΔG	1.2 – 1.6 GHz		+/- 0.2	+/-0.3	dB
3	Input VSWR	SWR ₁	1.2 – 1.6 GHz		1.35:1	1.5:1	Ratio
4	Output VSWR	SWR ₂	1.2 – 1.6 GHz		1.35:1	1.5:1	Ratio
5	Reverse Isolation	S ₁₂	1.2 – 1.6 GHz	20	22		dB
6	Noise Figure	NF	1.2 – 1.6 GHz		1.0	1.2	dB
7	Output Power 1dB Compression Point	P _{1dB}	1.2 – 1.6 GHz	10	14		dBm
8	Output-Third-Order Interception Point	IP ₃	Two-Tone, P _{out} +0 dBm each, 1 MHz separation	22	26		dBm
9	Current Consumption	I _{dd}	$V_{dd} = +3 \ V \sim +12 V$		30		mA
10	Power Supply Voltage	V_{dd}		+3		+12	V
11	Thermal Resistance	R _{th,c}	Junction to case			220	°C/W
12	Operating Temperature	To		-40		+85	°C
13	Maximum CW RF Input Power	P _{IN, MAX}	DC – 6 GHz			30	dBm

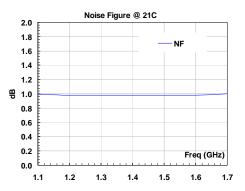
Absolute Maximum Ratings

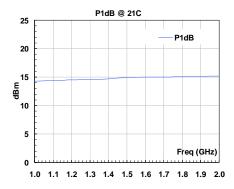
Parameters	Units	Ratings
DC Power Supply Voltage	V	-0.5, 12
Drain Current	mA	45
Total Power Dissipation	mW	400
CW RF Input Power	dBm	30
Channel Temperature	°C	150
Storage Temperature	°C	-55 ~ 125
Operating Temperature	°C	-40 ~ 85
Thermal Resistance	°C/W	220

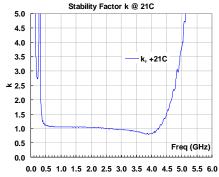
Operation of this device above any one of these parameters may cause permanent damage.

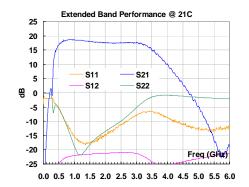

Functional Block Diagram

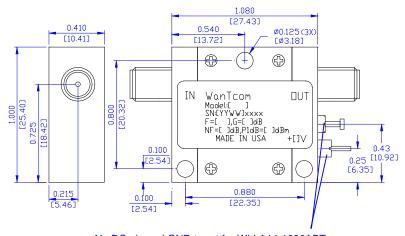



Ordering Information


Model Number	Feature	
WLA14-1930A	Without Output Bias-T	
WLA14-1930ABT	With Output Bias-T	


Typical Data





Outline, WP-5 Housing

UNITS: INCH [mm]
BODY: Brass
Finish: Gold Plating
RF Connector: SMA F Gold
V_{dd} PWR: Feed through

No DC pin and GND turret for WLLA14-1930ABT

Application Notes:

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. DC Power Line Connection, for WLLA14-1930A only

Strip the insulation layer at the end of DC power supply wire. The stripped distance should be in the range of 0.100" to 0.200". The $24 \sim 26$ American Wire Gauge wire is suitable. Wound the stripped terminal wire about 1 to 2 turns on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering area by Q-tip with alcohol to remove the flux and residue.

Repeat the process to solder the DC return wire on the ground turret.

C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.
