
Single Supply RFIC Power Amplifier #800 - 1675 MHz Operation

Features

- >30 dBm Output Power @ 5V
- Single 3V to 5V Supply Class A Operation
- Linear Class AB Operation (requires -VGG2)
- 50% Efficiency
- Unconditionally Stable

Applications

- Wireless Data Collection
- Cellular & Cordless Telephones
- Mobile Satellite Communications

Description

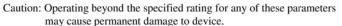
The PM2111G is a two stage high-efficiency GaAs FET RFIC power amplifier designed for wireless applications with 850 MHz to 1650 MHz center frequencies, where greater than 50 MHz bandwidths are achieved using external matching components.

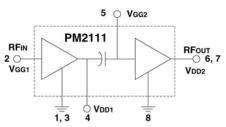
In a single supply mode both stages of the PM2111G are inherently biased for (saturated) Class A operation and the current will remain constant, or increase slightly under input power back-off. By applying a negative voltage to VGG2 a more linear, Class AB operation is possible, reducing current consumption when in an idle or backed-off input power mode. Using the PM2111G in this Class AB mode has an advantage over traditional deep depletion mode devices since it does not require two negative supply voltages or sequencing circuits for safe and proper operation.

Electrical Characteristics

Typical values specified for f = 1675 MHz, VDD= 5.0V, TA = +25°C, unless otherwise noted. Minimum and Maximum Specifications are Guaranteed over Frequency and Temperature. Tested in a 50Ω system using the external circuits shown on page 3.

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Frequency Range	f		800		1675	MHz
Small Signal Gain	G	PIN = -10 dBm		29.0		dB
Input Return Loss	RL			-15.0		dB
Power Output (P1dB)	P1dB			29.5		dBm
Power Output (saturated)	P _{SAT}	PIN= +5 <i>dBm,f</i> = 915 MHz		31.0		dBm
Power Output (saturated)	P _{SAT}	PIN= +5 dBm, f' = 1675 MHz	29	30.5		dBm
Power Added Efficiency	η	PIN= +5 dBm,f= 1675 MHz	40	50		%
Drain Current	IDD	PIN= +5 dBm		500	600	mA
Load VSWR for Output Stability	VSWR	Source VSWR < 1.2: 1		10:1		
Thermal Resistance	θ_{JC}	Junction to GND		35		°C/W

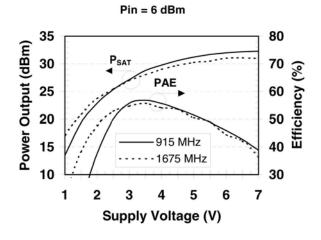

Internal Richardson Document #	Origination Date:	Rev: V1	Page 1/5
	June 2007	Date: Sep 2009	Page 1/5



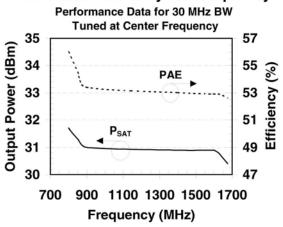
A Division of Richardson Electronics

Absolute Maximum Ratings

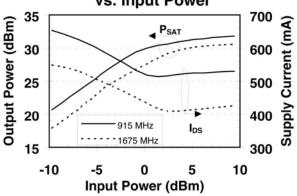
Characteristics	Symbol	Value	Units
Drain Voltage	V_{DD}	+9.0	V
Power Dissipation	P _{DISS}	1.9	W
Load VSWR	VSWR	10:1	
RF Input Power	P_{IN}	+10.0	dBm
Operating Temperature	T _{OP}	-40 to +85	°C
Junction Temperature	T_J	150	°C
Storage Temperature Range	T_{STG}	-65 to +150	°C



Note: Pins 1, 3 and 8 are common to the metal bottom side of package.


Typical Performance Characteristics

Obtained using external circuits shown on page 3.

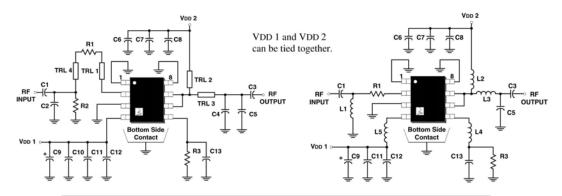

RF Power and PAE vs. Supply Voltage

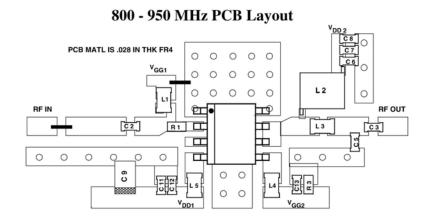

Power and Efficiency vs. Frequency

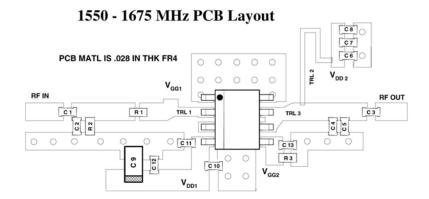
Output Power and Supply Current vs. Input Power

Harmonic Levels at PSAT

2nd 3rd 4th 5th 6th 7th


Internal Richardson Document #	Origination Date:	Rev: V1	Page 2/5
	June 2007	Date: Sep 2009	Fage 2/3


Recommended Matching Networks for the PM2111G


1550 - 1675 MHz Schematic

800 - 950 MHz Schematic

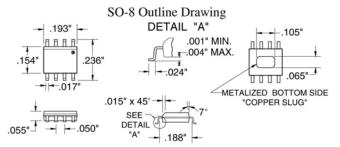
Note: For Class AB Operation R3 is connected to V_{GG2} rather than to ground.

A Division of Richardson Electronics

Application Information

The metalized bottom side contact area of the amplifier and the associated matching networks must have a continuous ground plane or the amplifier performance may be degraded. Terminate pins 1, 3, 8 and package base to a common ground pad. This ground pad must provide a connection to the back side of the ground plane with plated via holes. It is important to provide a good thermal path *for* the PM2111G since the device can dissipate up to 1.9 Watts of continuous average power.

The PM2111G requires external input, output, and interstage matching for proper operation. The input match is accomplished using C2, L1, R1 and TRL1 RI also serves to reduce low frequency gain and improve stability. R2 is a DC return for the gate of the first stage FET at 1675 MHz. R3 and C13 limits the gate current and is only required if PIN exceeds 5 dBm. The interstage matching consists of L4 and L5. Output power match is achieved using L3/TRL3, C4, and C5. L2 must be able to support DC current in excess of 700 mA to insure reliable operation. Extensive bypassing recommended for linear digitally modulated applications requiring good IMD performance. In addition, a negative bias voltage may be applied to V GG2 (pin 5) for class-AB operation. In this mode, no power sequencing is required to eliminate excess current draw prior to the application of sufficient gate voltage. The typical pinch-off voltage is -0.6V. V GG2 of -0.4 V provides idle currents below 200 mA.


List of Components				
800	-900 MHz	1550-1675 N	ИHz	
Part	Value	Value	Size	
C1	33 pF	33 pf	0603	
C2		3.0 pf	0603	
C3	33 pF	3.0 pf	0603	
C4		1.2 pF	0603	
C5	5.6 pF	1.2 pF	0603	
C6	33 pF	33 DF	0603	
C7	1000 pF	1000 pF	0603	
C8	0.1µF	0.1µF	0603	
C9	6.8µF	6.8µF	0603	
C10		33 pF	0603	
C11	33 pF	33 pF	0603	
C12	1000 pF	0.1 pF	0603	
CD13	56 pF	56 pF	0603	
L1	12nH		0805	
TRL1		θ = 15		
		<i>f</i> = 1675 MHz		
		Zo = 50 Ω		
L2/TRL2	18.5 nH	θ= 39	0805	
		f= 1675 MHz		
		Zo = 95 Ω		
L3/TRL3	1.8 ηΗ	θ6=29	0805	
		f= 1675 MHz		
		Zo = 50 Ω		
TRL4		θ = 16		
		<i>f</i> =]675 MHz		
		Zo = 50 Ω		
L4	6.8 ηΗ		0805	
L5	4.7 nH		0805	
R1	47 Ώ	5.1Ώ	0603	
R2		089 Ω	0603	
R3	20 Ω	20 Ώ	0603	

Part Number

Marking System:
The PM2111G
shall be
marked as follows:
Model Number:
PM2111G
Or
VR2111G
Lot Date Code:
YYWW

Pin Connections			
Pin#	Function		
1	GND		
2	RFIN/VGGI		
3	GND		
4	VOOI		
5	VGG2		
6	RFOlrr/VOD2		
7	RFollT/VDD2		
8	GND		
Base	GND		

Package Specifications

Ordering Information

Part Number PM211	1G
-------------------	----

Richardson Electronics

40W267 Keslinger Road P.O. Box 393 LaFox, IL 60147 Telephone: (800) 737- 6937

(630) 208-3637

Fax: (630) 208-2550 Internet: rfwireless.rell.com E-Mail: rwc@rell.com

IMPORTANT NOTICE

RICHARDSON ELECTRONICS, LTD AND ITS AFFILIATES RESERVE THE RIGHT TO MAKE CHANGES TO THE PRODUCT(S) OR INFORMATION CONTAINED HEREIN WITHOUT NOTICE. RICHARDSON ELECTRONICS ASSUMES NO RESPONSIBILITY FOR ANY ERRORS WHICH MAY APPEAR IN THIS DOCUMENT.

WARRANTY INFORMATION APPLICABLE TO THE PRODUCT IDENTIFIED HEREIN IS AVAILABLE UPON REQUEST. NOTHING CONTAINED HEREIN SHALL CONSTITUTE A WARRANTY, REPRESENTATION OR GUARANTEE OF ANY KIND. RICHARDSON ELECTRONICS EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND/OR IMPLIED INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, AND OF FITNESS FOR A PARTICULAR PURPOSE, USE OR APPLICATION.

NO PART OF THIS DOCUMENT MAY BE COPIED OR REPRODUCED IN ANY FORM OR BY ANY MEANS WITHOUT THE PRIOR WRITTEN CONSENT OF RICHARDSON ELECTRONICS, LTD.

WARNING

RICHARDSON ELECTRONICS PRODUCTS ARE NOT INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS. USE OF A RICHARDSON ELECTRONICS PRODUCT IN ANY SUCH APPLICATION WITHOUT WRITTEN CONSENT IS PROHIBITED.