

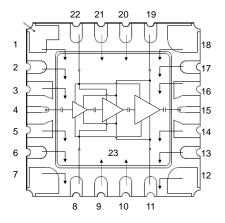
Applications

- Military SATCOM Terminals
- Commercial SATCOM Terminals
- · Point-to-Point Digital Radio
- Point-to Multipoint Digital Radio

Product Features

Frequency Range: 27 - 31 GHz
Pout: 36.5 dBm at P_{IN} = 14 dBm

• PAE: 25 % CW


• Small Signal Gain: 25 dB

• IM3: -35 dBc @ 25 dBm Pout/Tone

• Bias: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V}$ Typical

• Package Dimensions: 7 x 7 x 1.3 mm

Functional Block Diagram

General Description

TriQuint's TGA2594-HM is a packaged power amplifier fabricated on TriQuint's 0.15um GaN on SiC process. Operating from 27 to 31 GHz, the TGA2594-HM achieves 36.5 dBm saturated output power with a power-added efficiency of 25%, and 25 dB small signal gain.

The TGA2594-HM is offered in a hermetically sealed 22-lead 7x7 mm ceramic QFN designed for surface mount to a printed circuit board. The package has a Cu base, offering superior thermal management. The TGA2594-HM is ideally suited to support both commercial and military applications.

Both RF ports have integrated DC blocking capacitors and are fully matched to 50 Ohms.

Lead free and RoHS compliant.

Evaluation Boards are available upon request.

Pad Configuration

Pad No.	Symbol
1-3, 5-7, 9,10,12-14, 16-18, 20, 21, 23	GND
4	RFin
8, 11	NC
15	RFout
19	V_D
22	V _G

Ordering Information

Part	ECCN	Description
TGA2594-HM	3A001.b.2.c	27 – 31 GHz GaN Power Amplifier

Preliminary Datasheet: 12-30-14 © 2014 TriQuint

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (V _D)	22.5 V
Gate Voltage Range (V _G)	-5 to 0 V
Drain Current (I _D)	1.4 A
Gate Current (I _G)	85 °C: -3 to 17 mA
Power Dissipation (P _{DISS}), 85°C	15 W
Input Power, CW, 50 Ω , (P _{IN})	30 dBm
Channel Temperature (T _{CH})	275 °C
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	-55 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

Parameter	Value
Drain Voltage (V _D)	20 V
Drain Current (I _{DQ})	140 mA
Drain Current Under RF Drive (ID_DRIVE)	See plots p. 7
Gate Voltage (V _G)	-3 V (Typ.)
Gate Current Under RF Drive (I _{G_DRIVE})	See plots p. 7
Temperature (T _{BASE})	-40 to 85 °C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

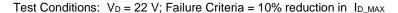
Electrical Specifications

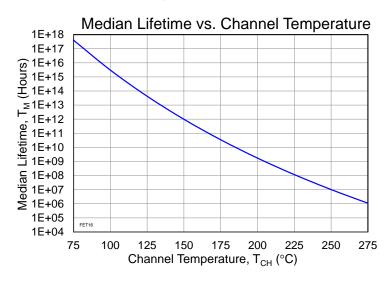
Test conditions unless otherwise noted: 25 °C, V_D = 20 V, I_{DQ} = 140 mA, V_G = −3 V Typ, CW.

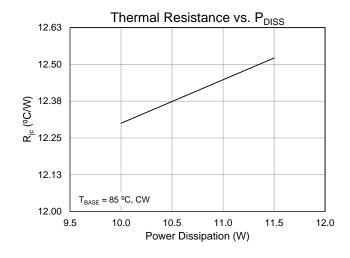
Parameter	Min	Typical	Max	Units
Operational Frequency Range	27		31	GHz
Small Signal Gain		25		dB
Input Return Loss		> 5		dB
Output Return Loss		> 5		dB
Output Power @ Pin = 14 dBm		36.5		dBm
Power Added Efficiency @ Pin = 14 dBm		25		%
IM3 (Pout/tone = 25 dBm/Tone)		-35		dBc
IM5 (Pout/tone = 25 dBm/Tone)		-43		dBc
Small Signal Gain Temperature Coefficient		-0.05		dB/°C
Output Power Temperature Coefficient		-0.04		dBm/°C

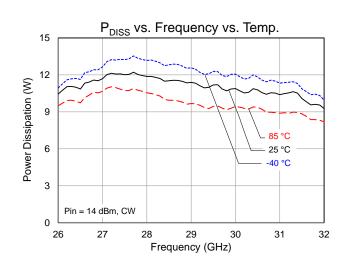
Preliminary Datasheet: 12-30-14 © 2014 TriQuint

Disclaimer: Subject to change without notice www.triquint.com

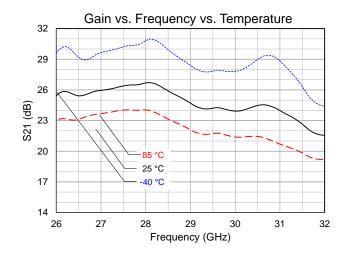

27 to 31 GHz GaN Power Amplifier

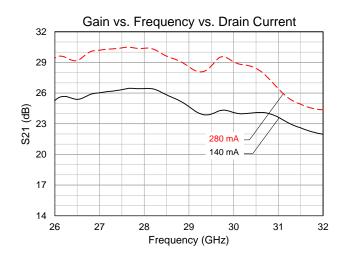

Thermal and Reliability Information

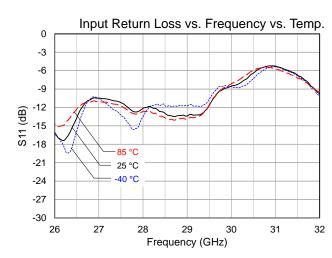

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) (1)	T _{BASE} = 85°C, V _D = 20 V (CW)	10.3	°C/W
Channel Temperature (T _{CH}) (Under RF drive)	At Freq = 29 GHz, P_{IN} = 14 dBm: I_{DQ} = 140 mA, I_{D_Drive} = 640 mA	177	°C
Median Lifetime (T _M)	Pout = 36 dBm, Poiss = 9 W	2.4E+10	Hrs

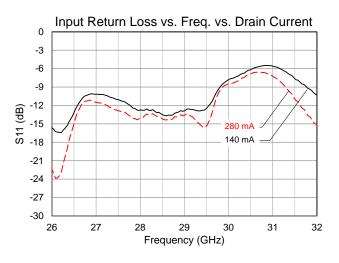

Notes:

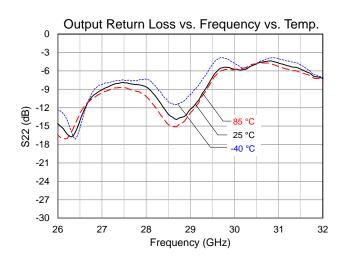
1. Thermal resistance measured to back of package.

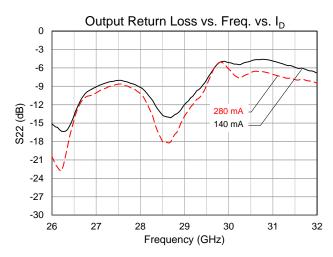


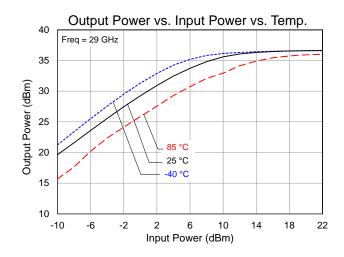


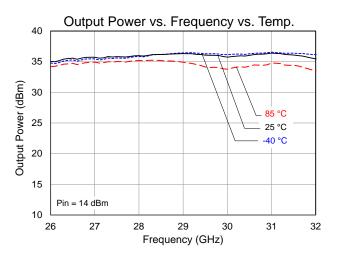


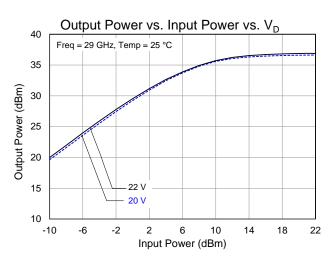

Typical Performance: Small Signal

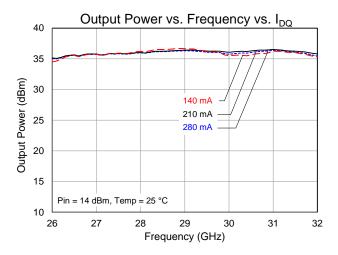

Conditions unless otherwise specified: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V}$ Typical, CW.

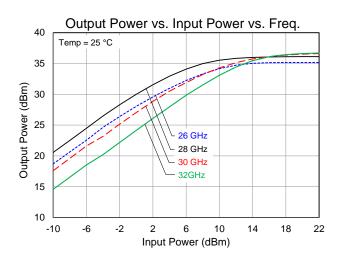


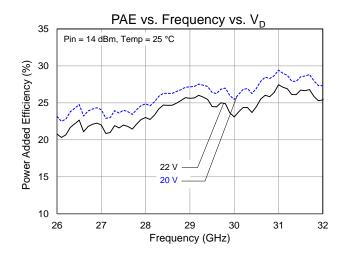


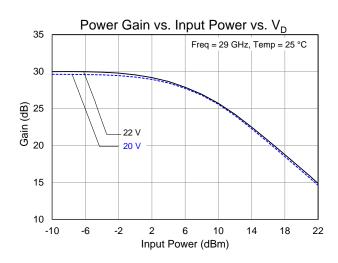


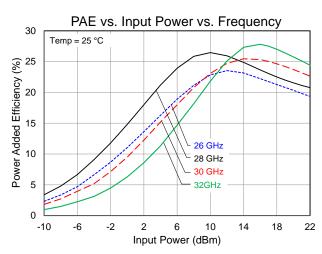


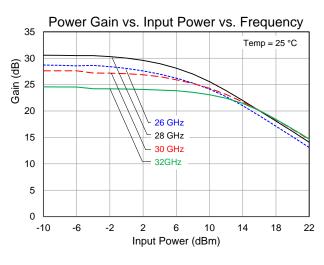

Typical Performance: Large Signal

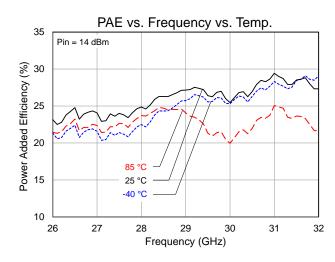

Conditions unless otherwise specified: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V Typical}$, CW.

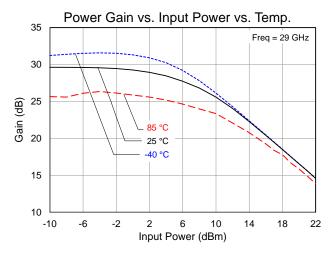


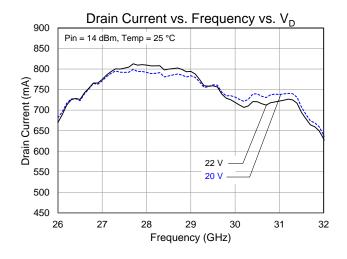


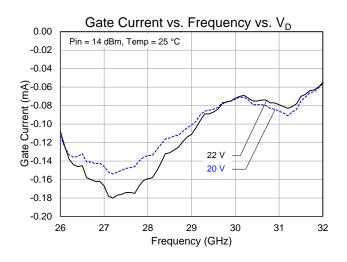


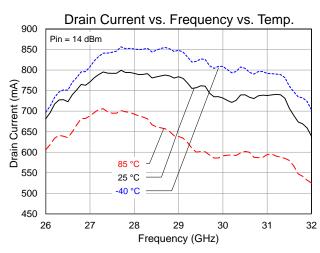

Typical Performance: Large Signal

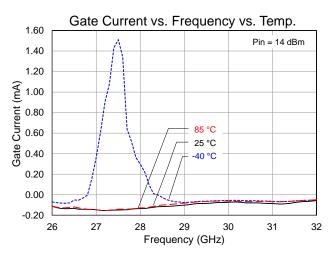

Conditions unless otherwise specified: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V}$ Typical, CW.

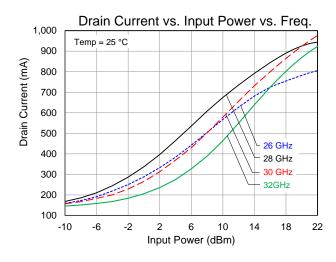


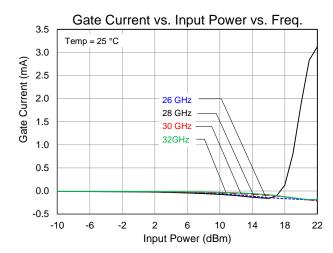


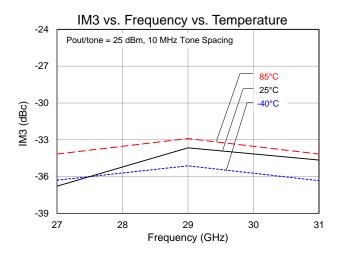


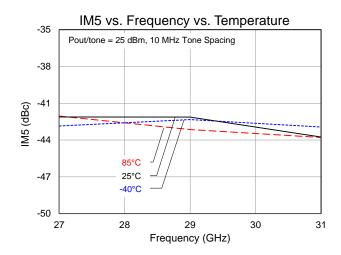


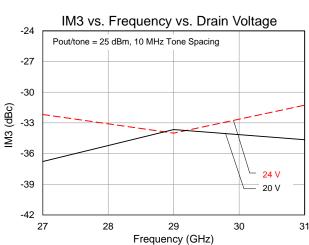

Typical Performance: Large Signal

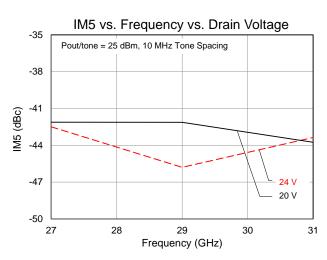

Conditions unless otherwise specified: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V}$ Typical, CW.

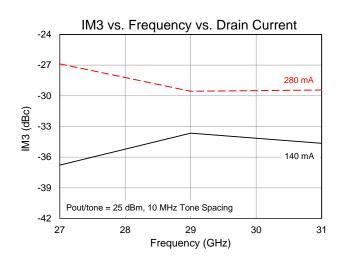


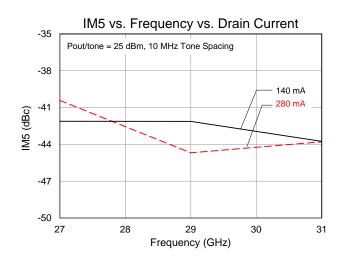

Preliminary Datasheet: 12-30-14 © 2014 TriQuint

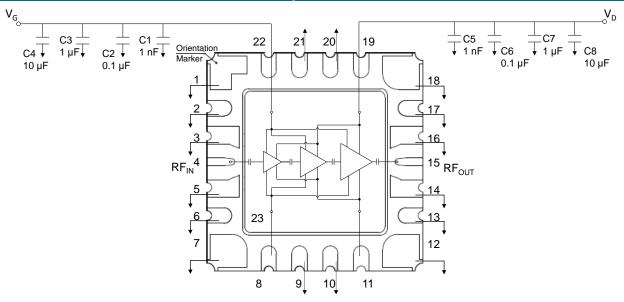

- 7 of 13 - Disclaimer: Subject to change without notice www.triquint.com




Typical Performance: Large Signal and Linearity


Conditions unless otherwise specified: $V_D = 20 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -3 \text{ V}$ Typical, CW.





Preliminary Datasheet: 12-30-14 © **2014 TriQuint**

Disclaimer: Subject to change without notice www.triquint.com

Applications Information and Pad Layout

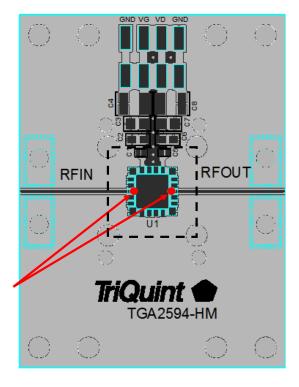
Bias-up Procedure

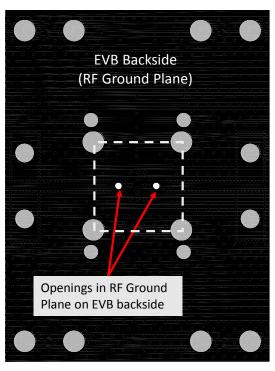
- 1. Set I_D limit to 1.2 A, I_G limit to 10 mA
- 2. Apply -5 V to V_G
- 3. Apply +20 V to V_D; ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G until $I_{DQ} = 140$ mA ($V_G \sim -3$ V Typ.).
- 5. Turn on RF supply

Bias-down Procedure

- 1. Turn off RF supply
- 2. Reduce V_G to -5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Pad Description


Pad No.	Symbol	Description
1-3, 5-7, 9,10,12-14, 16-18, 20,21,23	GND	Must be grounded on the PCB.
4	RFIN	Output; matched to 50 Ω; DC blocked
8, 11	NC	For use with TQ EVB, do not connect (pins are connected internal to package)
15	RFout	Input; matched to 50 Ω; DC blocked
19	V _D (1)	Drain voltage; Bias network is required; see recommended Application Information above.
22	V _G (2)	Gate Voltage; Bias network is required; see recommended Application Information above.


Notes:

- 1. If not using TQ EVB, VD may be applied to either pin 11 or pin 19.
- 2. If not using TQ EVB, VG may be applied to either pin 8 or pin 22.

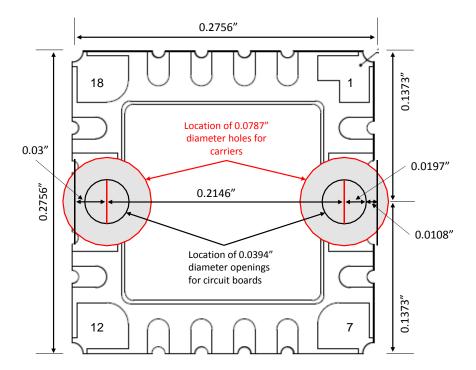
Evaluation Board

Location of openings on backside of EVB

Note existence of 1mm diameter opening on backside of EVB – the openings are required for all EVBs. See Assembly Notes (page 11) for additional detail.

Bill of Material

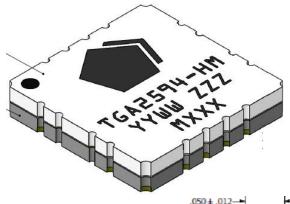
Reference Des.	Value	Description	Manuf.	Part Number
C1, C5	1 nF	Cap, 0402, 50 V, 10%, X7R	Various	
C2, C6	0.1 μF	Cap, 0603, 50 V, 10%, X7R	Various	
C3, C7 (1)	1 µF	Cap, 0805, 50 V, 10%, X7R	Various	
C4, C8 (1)	10 μF	Cap, 1206, 50 V, 10%, X7R	Various	

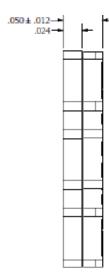

Notes:

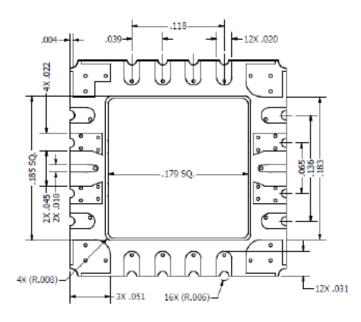
1. If the designated application is not sensitive to IM3, capacitors C3, C4, C7, and C8 may omitted.

Assembly Notes

- 1. Clean the board or module with alcohol. Allow it to dry fully.
- 2. AuSn solder is recommended for mounting the TGA2594-HM to the board.
- 3. Apply solder paste to each pin of the TGA2594-HM, and heat achieve reflow, being careful not to exceed the thermal budget.
- 4. Clean the assembly with alcohol.
- 5. To attain quoted RF performance, the following is required:
 - On the printed circuit board, there must be two 1mm (0.0394") diameter openings on the backside (RF Ground Plane) of the circuit board.
 - Location of the openings is contained in the TQ Evaluation Board layout.
 - The 1 mm diameter openings for the board are shown in the diagram below in reference to the base of the package.
 - ii. Use of a carrier plate with 2mm (0.0787") diameter holes.
 - The holes should be located with respect to the package pin-out as shown in the diagram below.
 - The holes should be 4mm deep.
- 6. To improve thermal performance, the following is recommended:
 - i. The use of a 4 mil indium shim between the circuit board and the carrier plate.
 - ii. The In shim should have the same hole diameter and positioning as the carrier plate (see diagram below for location with respect to the package backside).
 - iii. The holes should be machined fully through the In shim.


- 11 of 13 -


Preliminary Datasheet: 12-30-14 © 2014 TriQuint


Disclaimer: Subject to change without notice www.triquint.com

Mechanical Information

Units: inches

Tolerances: unless specified

 $x.xx = \pm 0.01$ $x.xxx = \pm 0.005$

Materials:

Base: Copper Lid: Ceramic

All metalized features are gold plated

Part is solder sealed

Marking:

2578: Part number YY: Part Assembly year

WW: Part Assembly week ZZZ: Serial Number

MXXX: Batch ID

27 to 31 GHz GaN Power Amplifier

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating

Level TBD at TBD°C convection reflow The part is rated Moisture Sensitivity Level TBD at TBD°C per JEDEC standard IPC/JEDEC J-STD-020.

Solderability

Compatible with the latest version of J-STD-020, Lead-free solder, 260°C

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

ECCN

US Department of Commerce: 3A001.b.2.c

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.972.994.8465 Email: <u>info-sales@triquint.com</u> Fax: +1.972.994.8504

For technical questions and application information: **Email:** <u>info-products@triquint.com</u>

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Preliminary Datasheet: 12-30-14 - 13 of 13 - Disclaimer: Subject to change without notice
© 2014 TriQuint

www.triquint.com