
3 Watt C-Band Packaged Power Amplifier

Measured Performance

Bias conditions: Vd = 6 V, Id = 1.0 A, Vg = -0.6 V Typical

Key Features

Frequency Range: 5.9 – 8.5 GHz
Power: 35 dBm Psat, 34 dBm P1dB

Gain: 18 dBTOI: 42 dBmPAE: 37%NF: 7.5 dB

Bias: Vd = 6 V, Id = 1.0 A, Vg = -0.6 V Typical

Package Dimensions: 6 x 6 x 0.85 mm

Primary Applications

Point-to-Point Radio

Communications

Product Description

The TriQuint TGA2701-SM is a packaged 35dBm Power Amplifier for C-band applications. The TGA2701-SM provides a nominal 35 dBm of output power at an input power level of 22 dBm with a small signal gain of 18 dB. Nominal TOI is 42 dBm and noise figure is 7.5 dB.

The TGA2701-SM is a QFN 6x6 mm surface mount package. It is ideally suited for low cost emerging markets such as point to point radio and communications.

Lead-Free & RoHS compliant.

Datasheet subject to change without notice.

Table I Absolute Maximum Ratings 1/

Symbol	Parameter	Value	Notes
Vd-Vg	Drain to Gate Voltage	9.2 V	
Vd	Drain Voltage	8 V	2/
Vg	Gate Voltage Range	-1.2 to +0.5 V	
ld	Drain Current	3.85 A	2/
lg	Gate Current Range	-14 to 126mA	
Pin	Input Continuous Wave Power	29 dBm	
Tchannel	Channel Temperature	200 °C	2/

- These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

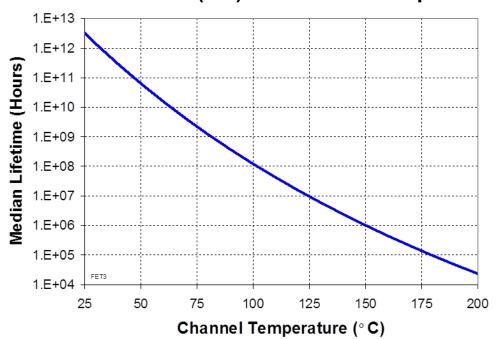
Table II Recommended Operating Conditions

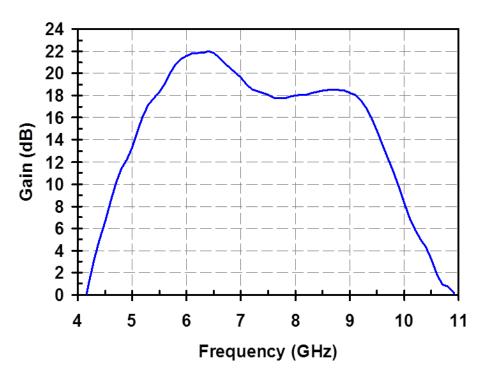
Symbol	Parameter 1/	Value
Vd	Drain Voltage	6 V
ldq	Drain Current	1.0 A
Id_Drive	Drain Current under RF Drive	1.6 A
Vg	Gate Voltage	-0.6 V

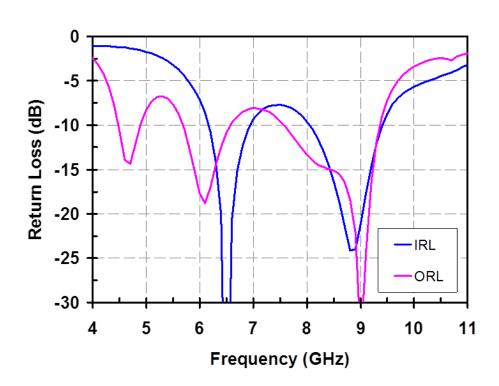
1/ See assembly diagram for bias instructions.

Table III RF Characterization Table

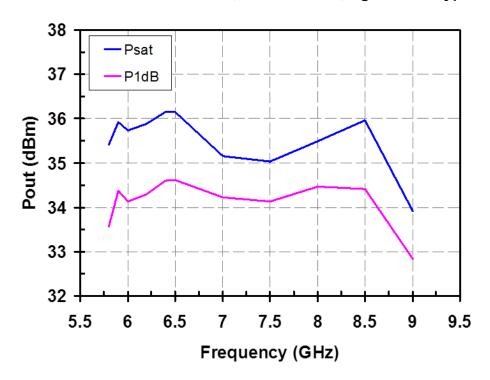
Bias: Vd = 6 V, Id = 1.0 A, Vg = -0.6 V Typical

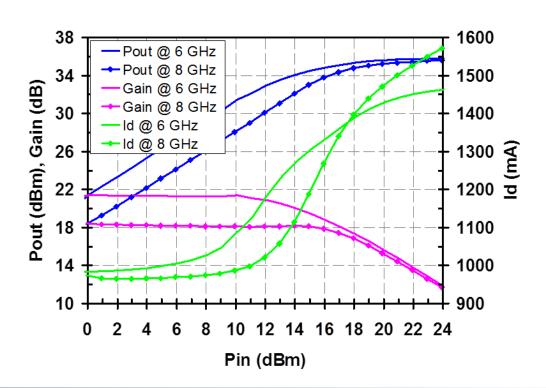

SYMBOL	PARAMETER	TEST CONDITIONS	NOMINAL	UNITS
Gain	Small Signal Gain	F = 5.9 – 8.5 GHz	18	dB
IRL	Input Return Loss	F = 5.9 – 8.5 GHz	-10	dB
ORL	Output Return Loss	F = 5.9 – 8.5 GHz	-10	dB
Psat	Saturated Output Power	F = 5.9 – 8.5 GHz	35	dBm
P1dB	Output Power @ 1dB Compression	F = 5.9 – 8.5 GHz	34	dBm
TOI	Output TOI	F = 5.9 – 8.5 GHz	42	dBm
NF	Noise Figure	F = 5.9 – 8.5 GHz	7.5	dB
	Gain Temperature Coefficient	F = 5.9 – 8.5 GHz	-0.03	dB/°C
	Power Temperature Coefficient	F = 5.9 – 8.5 GHz	-0.01	dBm/°C

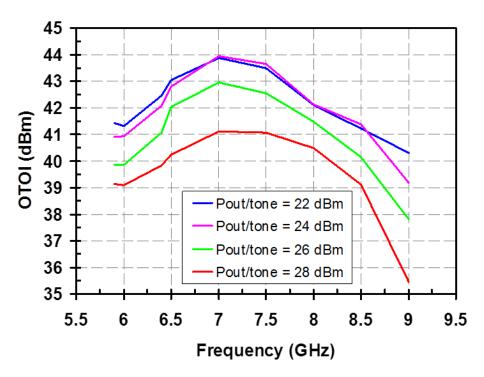

Table IV
Power Dissipation and Thermal Properties

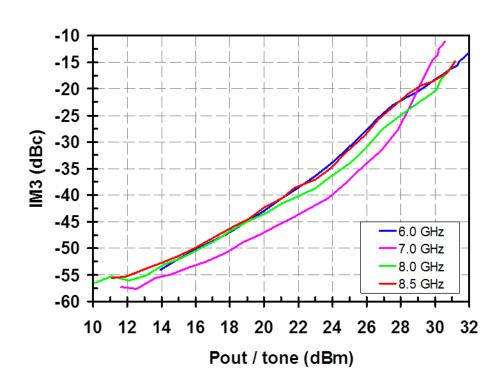

Parameter	Test Conditions	Value
Maximum Power Dissipation	Tbaseplate = 85 °C	Pd = 18.5 W Tchannel = 200 °C
Thermal Resistance, θjc	Vd = 6 V Id = 1A Pd = 6 W Tbaseplate = 85 °C	θjc = 6.2 °C/W Tchannel = 122 °C Tm = 1.3E+7Hrs
Thermal Resistance, θjc Under RF Drive	Vd = 6 V Id = 1.6 A Pout = 35.5 dBm Pd = 6 W Tbaseplate = 85 °C	θjc = 6.2 °C/W Tchannel = 122 °C Tm = 1.3E+7 Hrs
Mounting Temperature		Refer to Solder Reflow Profiles (pg 16)
Storage Temperature		-65 to 150 °C

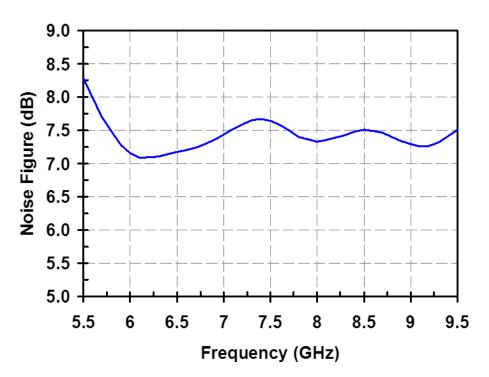
Median Lifetime (Tm) vs. Channel Temperature

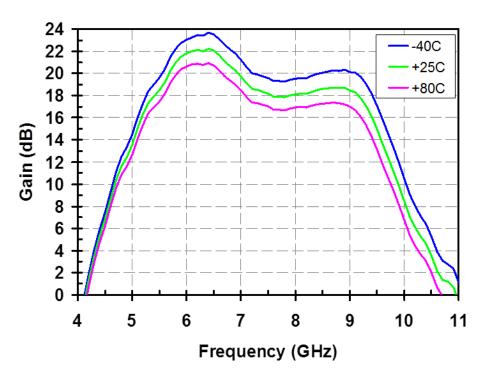


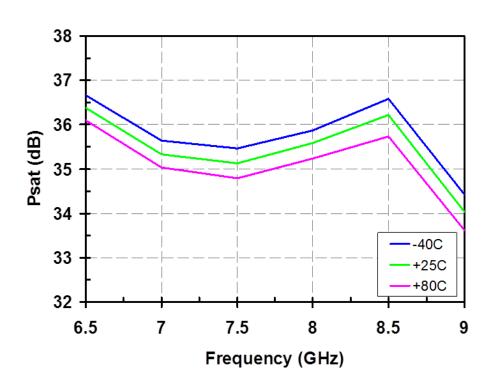


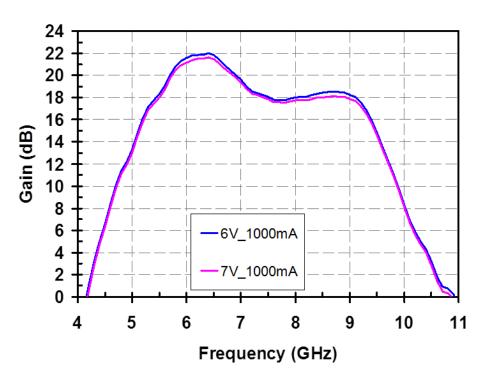


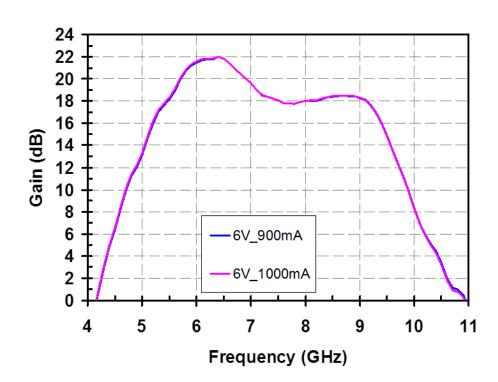


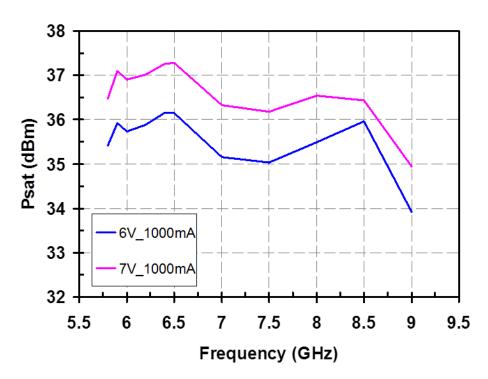


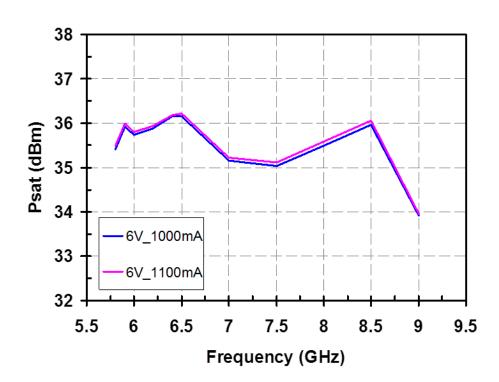


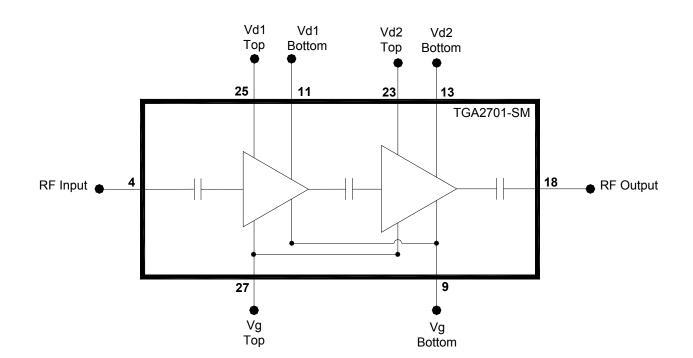












Electrical Schematic

Bias Procedures

Bias-up Procedure

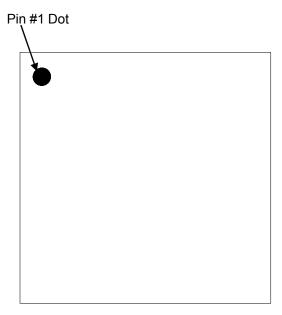
Vg (combined Vg_Top & Vg_Bottom) set to -1.2 V

Vd (combined all four Vd) set to +6 V

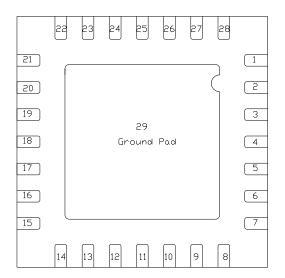
Adjust Vg more positive until Idq is 1 A. This will be \sim Vg = -0.6 V

Bias-down Procedure

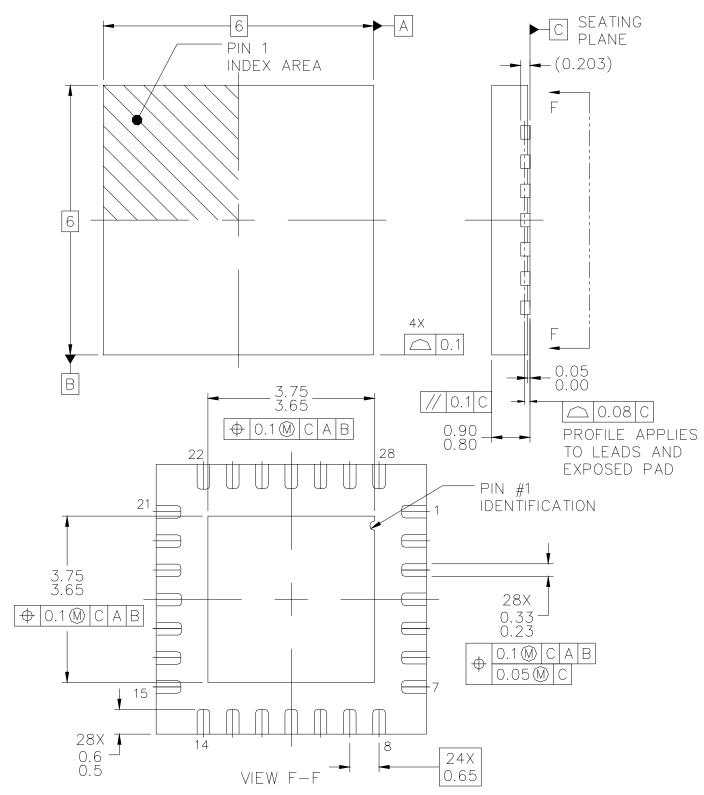
Turn off RF supply


Reduce Vg to -1.2 V. Ensure Id ~ 0 mA

Turn Vd to 0 V

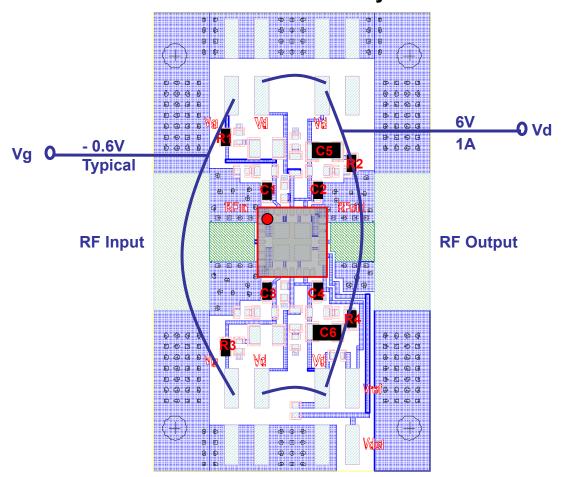


Package Pinout

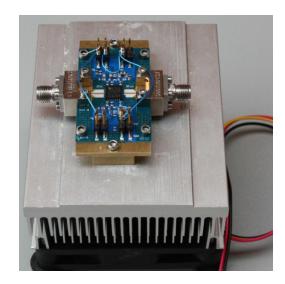

BOTTOM VIEW

Pin	Description
4	RF Input
9	Vg_Bottom
11	Vd1_Bottom
13	Vd2_Bottom
18	RF Output
23	Vd2_Top
25	Vd1_Top
27	Vg_Top
29	Ground
1, 2, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28	NC

Mechanical Drawing Units: Millimeters


TGA2701-SM

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.


Recommended Assembly Board

Part	Description
C1, C2, C3, C4	1000 pF Capacitor (0402)
C5, C6 1 uF Capacitor (0805	
R1, R2, R3, R4	0 Ohm Resistor Jumper (0402)

Board is 8mil thick RO4003 with 1oz copper cladding.

Board is mounted on metal block and adequate heatsinking with fan is required.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Assembly Notes

Recommended Surface Mount Package Assembly

- Proper ESD precautions must be followed while handling packages.
- Clean the board with acetone. Rinse with alcohol. Allow the circuit to fully dry.
- TriQuint recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile. Typical solder reflow profiles are listed in the table below.
- Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot
 placement. The volume of solder paste depends on PCB and component layout and should be well
 controlled to ensure consistent mechanical and electrical performance.
- · Clean the assembly with alcohol.

Typical Solder Reflow Profiles

Reflow Profile	SnPb	Pb Free
Ramp-up Rate	3 °C/sec	3 °C/sec
Activation Time and Temperature	60 – 120 sec @ 140 – 160 °C	60 - 180 sec @ 150 - 200 °C
Time above Melting Point	60 – 150 sec	60 – 150 sec
Max Peak Temperature	240 °C	260 °C
Time within 5 °C of Peak Temperature	10 – 20 sec	10 – 20 sec
Ramp-down Rate	4 – 6 °C/sec	4 – 6 °C/sec

Ordering Information

Part	Package Style	
TGA2701-SM	QFN 6x6 Surface Mount	

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.