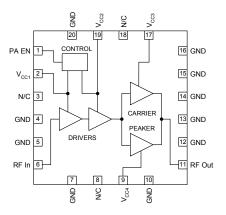


Absolute Maximum Ratings

- Small Cell BTS
- 3G/4G Wireless infrastructure
- Linearized Transmitter
- Heterogeneous Networks
- · Macro BTS Driver Amplifier

20 Pin 20x20 mm Plastic Package

Product Features


- 1805-1885 MHz
- 2.5 W RMS Output Power
- Integrated Doherty Final Stage
- Three Stage Power Added Efficiency: 35%
- 50 Ω Input / Output
 Power Gain: 33.6 dB

• Peak Power: 20 W

Package Dimensions: 20 x 20 x 1.5 mm

100% DC and RF tested

Functional Block Diagram

General Description

The TQP2453 is a fully integrated surface mount three-stage Power Amplifier Module ideally suited for small cell base station applications with 1 W RMS at the antenna. The module is internally matched to 50 Ω input and output and requires minimal external components. The module is very compact and offers a much smaller footprint than traditional discrete component solutions.

The TQP2453 incorporates a Doherty final stage delivering high power added efficiency of 35% for the entire module at 2.5 W average power.

The TQP2453 supports multi-mode and multi-carrier signals. The module includes InGaP/GaAs HBT device technology to provide a combination of high efficiency and DPD friendliness.

Lead-free and RoHS compliant.

Evaluation Board is available upon request.

Pin Configuration

Pin No.	Label
1	PA EN
2	V _{CC1}
3, 8, 18	N/C
4, 5, 7, 10, 12-16, 20	GND
6	RF IN
9	V _{CC4}
11	RF OUT
17	V _{CC3}
19	V _{CC2}
Backside Paddle	RF/DC GND

Ordering Information

Part No.	ECCN	Description
TQP2453	5A991.b	Small Cell PAM
TQP2453-PCB	5A991.b	1805-1885 MHz Eval Board

1800 MHz, 2.5 W, Small Cell PA Module

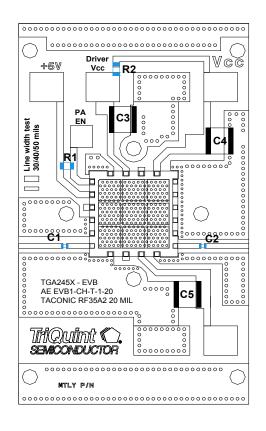
Parameter	Rating	
Collector Voltage (V _{CC1})	6 V	
Collector Voltage (V _{CC2} , V _{CC3} , V _{CC4})	19 V	
RF Input Power Over Drive above	8 dB	
P_{IN} at 34 dBm P_{OUT} , 50 Ω , T = 25°C	0 00	
VSWR at P _{OUT} with 1 dB PAR	5:1	
compression with WCDMA signal	0.1	
Storage Temperature	−65°C to 150°C	
Case Temperature (Backside Pads)	120°C	

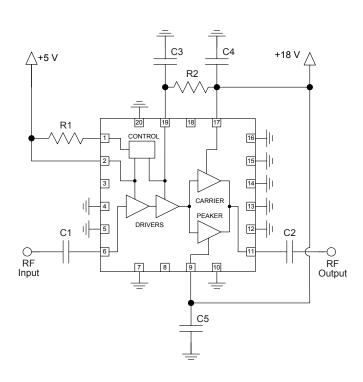
Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Operating Temperature	-40	+25	+105	°C
V _{CC1}		5		V
V _{CC2} , V _{CC3} , V _{CC4}		18		V
PA Enable On	1.15	1.2-5.5	6	V
PA Enable Off		0	0.6	V
I _{CQ1} (at V _{CC1})		60		mA
I _{CQ2} (at V _{CC2})		25		mA
I _{CQ3} (at V _{CC3})		90		mA
Tj for > 10 ⁶ hours MTTF			200	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.


Electrical Specifications at T_{CASE} = 25°C


Test conditions unless otherwise noted: V_{CC1} = 5 V, V_{CC2} = 18 V, V_{CC3} = 18 V, V_{CC4} = 18 V, I_{CQ1} = 60 mA, I_{CQ2} = 25 mA, I_{CQ3} = 90 mA, P_{OUT} = 34 dBm. System impedance = 50 Ω .

Parameter	Conditions	Min	Тур	Max	Units
RF Frequency Range		1805		1885	MHz
I _{CQ1}	V _{CC1} = 5 V		60		mA
I _{CQ2} +I _{CQ3}	V _{CC2} = V _{CC3} = 18 V		115		mA
Power Gain	P _{OUT} = 34 dBm average		33.6		dB
Gain flatness	P _{OUT} = 34 dBm average		1		dB
Average Output Power			+34		dBm
P3dB	Pulsed, 10 µsec width, 1 msec period		+43		dBm
Power Added Efficiency	P _{OUT} = 34 dBm average		35		%
ACLR DPD corrected	5-20 MHz SBW UMTS/LTE		-55		dBc
Input/Output Impedance			50		Ω
Input Return Loss	P _{OUT} = 34 dBm average		19		dB
Group delay				6	nsec
Group delay ripple				2.1	nsec
Noise Figure			6.2		dB

PC Board Layout and Evaluation Board Diagram

Bill of Material - TQP2453-PCB Evaluation Board

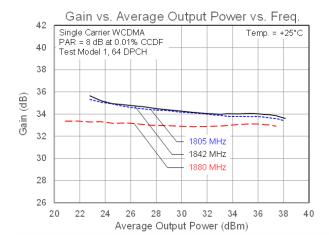
Reference Des.	Value	Description	Manuf.	Part Number
Connector	n/a	N-type Connector	Huber+Suhner	23_N-50-0-16/133_NE
R2	0 Ω	Jumper		1206 0 ohm resistor
R1	10 kΩ	Resistor		1206 10K resistor
C1, C2	18 pF	Capacitor	ATC	0603 600S 56pF capacitor
C3, C4, C5 ⁽¹⁾	10 μF	Capacitor	TDK	2220 X7R 10uF 50V
PCB	n/a	Taconic RF35 A2 20 mils		AE EVB1 CH-T-1-20

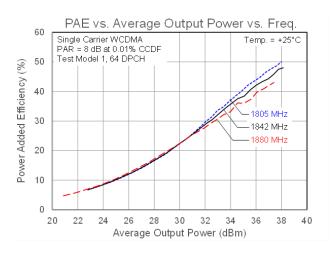
Notes:

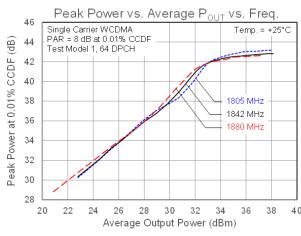
1. C3, C4, C5 can be replaced by 10 µF 50 V Electrolytic capacitor if it is needed.

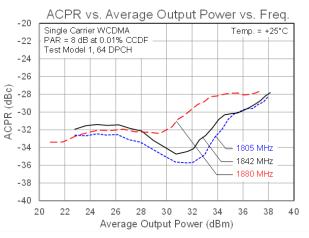
Bias-up Procedure

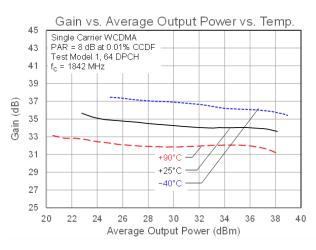
- 1. Attach input and output loads onto evaluation board.
- 2. Turn on 18 V power supply V_{CC2} , V_{CC3} , V_{CC4} .
- 3. Turn on 5 V power supply V_{CC1}.
- 4. Apply RF signal.
- 5. Turn on RF power.

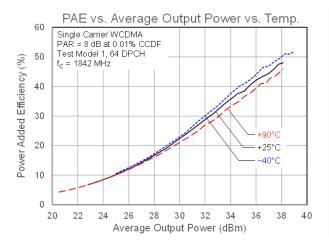

Bias-down Procedure

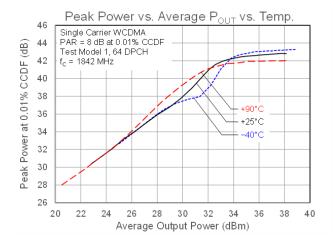

- 1. Turn off RF power.
- 2. Turn off PA EN.
- 3. Turn off 5 V power supply V_{CC1}.
- 4. Turn off 18 V power supply V_{CC2}, V_{CC3}, V_{CC4}.

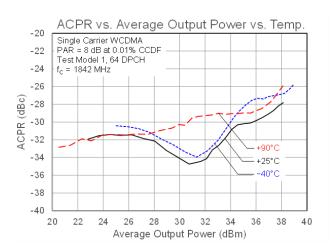


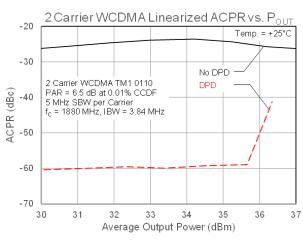

Performance Plots

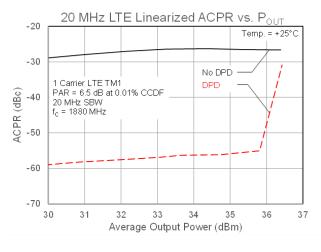

Test conditions unless otherwise noted: V_{CC1} = 5 V, V_{CC2} = 18 V, V_{CC3} = 18 V, I_{CQ1} = 60 mA, I_{CQ2} = 25 mA, I_{CQ3} = 90 mA

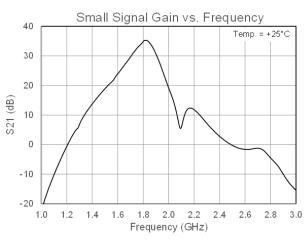


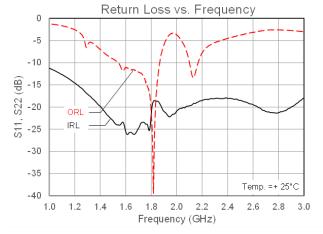


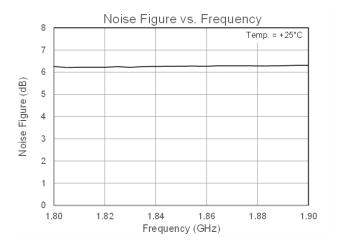


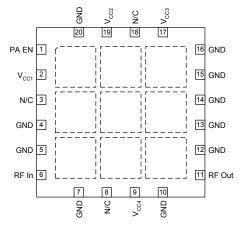



Performance Plots


Test conditions unless otherwise noted: V_{CC1} = 5 V, V_{CC2} = 18 V, V_{CC3} = 18 V, I_{CQ1} = 60 mA, I_{CQ2} = 25 mA, I_{CQ3} = 90 mA



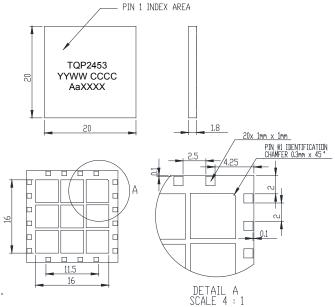




Performance Plots

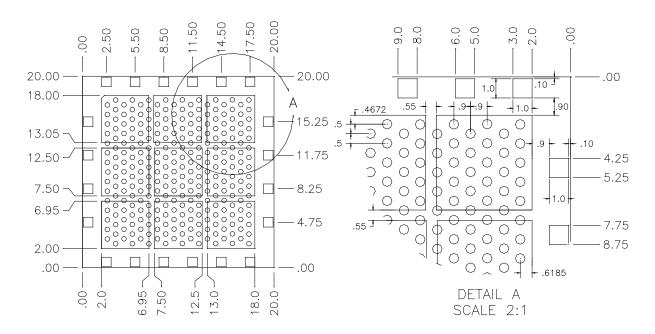
Test conditions unless otherwise noted: $V_{CC1} = 5 \text{ V}$, $V_{CC2} = 18 \text{ V}$, $V_{CC3} = 18 \text{ V}$, $I_{CQ1} = 60 \text{ mA}$, $I_{CQ2} = 25 \text{ mA}$, $I_{CQ3} = 90 \text{ mA}$

Pin Configuration and Description



Pin No.	Label	Description
1	PA EN	Control Voltage. See Recommended Operating Conditions on page 2.
2	V _{CC1}	Bias Voltage for pre-driver stage.
3, 8, 18	N/C	No electrical connection. Provide grounded land pads for PCB mounting integrity.
4, 5, 7, 10, 12-16, 20	GND	Internal grounding; must be grounded on PCB.
6	RF In	RF Output matched to 50 Ω.
9	V_{CC4}	Bias Voltage for output stage.
11	RF Out	RF Output matched to 50 Ω.
17	V_{CC3}	Bias Voltage for output stage.
19	V_{CC2}	Bias Voltage for driver stage.

Package Marking and Dimensions


Marking: Part number – TQP2453 Year/week/country code – YYWW CCCC Lot code – AaXXXX

Notes:

1. All dimensions are in millimeters. Angles are in degrees.

PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.
- 3. Ground / thermal vias are critical for the proper performance of this device. Vias should use a 0.508 mm diameter drill and have a final plated thru diameter of 0.35 mm.

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 1C Value: Passes ≥ 1000 V

Test: Human Body Model (HBM) JEDEC Standard JESD22-A114 Standard:

MSL Rating

MSL Rating: Level 3

260°C convection reflow Test:

JEDEC Standard IPC/JEDEC J-STD-020 Standard:

ECCN

US Department of Commerce 5A991.b

Solderability

Compatible with both lead-free (260°C maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $(C_{15}H_{12}Br_4O_2)$ Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: +1.972.994.8465 www.triquint.com Tel: Email: info-sales@triquint.com Fax: +1.972.994.8504

For technical questions and application information:

Email: btsapplications@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.