

Functional Block Diagram

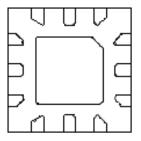
Product Description

The TQP770001 *Bluetooth* PA is designed on TriQuint's advanced InGaP HBT GaAs technology offering state of the art reliability, temperature stability and ruggedness. The PA is a two-stage design requiring several SMD tuning elements for input and output matching, gain shaping, and bias injection. Features include an integrated bias controller with a power control (variable gain) function. The bias controller also acts to provide temperature compensation. The PA is housed in a 2.0 mm x 2.0 mm 12 pin STSLP package with a grounded back paddle. A recommended drawing is provided in section 4.3.2. This PA is designed to operate in *Bluetooth* v2.0 class 1 systems. It is also intended to be Enhanced Data Rate (EDR) compliant with *Bluetooth* v2.0 + EDR specification for both 2 Mbps and 3 Mbps modulation modes.

Electrical Specifications

Conditions: Vcc = Vctrl = Ven = 3.3 V, Pin=-5dBm, TC = 25°C, with TRIQUINT Application Circuit, unless otherwise noted.

Parameter	Min	Тур	Max	Units
Frequency	2.4		2.5	GHz
RF transmit power Vctrl=3.3V	19.5	22.0	-	dBm
Gain @ Pin= -10 dBm	25.0	27.0	-	dB
PAE @ 21.5dBm		50		%


Features

- InGaP HBT Technology
- Bluetooth v2.0 class 1 systems
- High Efficiency: 50% @ 21.5dBm
- EDR (Enhanced Data Rate) Compliant
- Under EDR modulation, its low AM-AM and AM-PM distortion guarantee high modulation accuracy
- Will operate under Bluetooth FSK, 8DPSK, and Pi/4-DQPSK modulations
- Optimized for 50 ohm System
- Integrated bias controller with a power control (variable gain) function
- Small 12-pin QFN, 2x2mm module
- Lead-free 260°C RoHS Compliant
- Full ESD Protection

Applications

Bluetooth v2.0 + EDR class 1 systems

Package Style

12-Pin 2.0x2.0x0.6mm STSLP Package Bottom View

Absolute Maximum Ratings¹

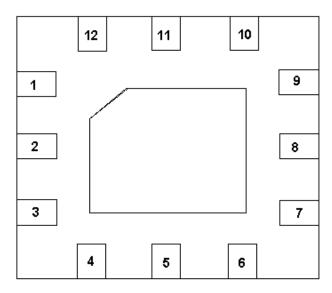
Parameter	Symbol	Min.	Typ/Nom	Max.	Units
Power Supply Voltage	VCC	-	-	6	V
Power Supply Voltage	VCC, RF Applied	-	-	5	V
Bias and reference Voltage	PA_ON (PA_On = Ven = Venable)	-	-	5	V
Bias power control voltage	P_C (Vctrl = P_CTRL)	-	-	5	V
DC Supply current	ICC	-	-	250	mA
Storage Temperature	TSTORAGE	-40	-	85	°C
Operating Case Temperature	TC	-5	-	85	°C
Maximum input power	PI	-	-	5	dBm

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ/Nom	Max.	Units
Supply Voltage	Vcc	3.0	3.3	3.6	Volts
Reference Voltage	PA_ON (Ven)				Volts
PA On		3.0	3.3	3.60	
PA Off		0	-	0.4	
Bias power control voltage	P_CTRL (Vctrl)		0.0 - Vcc		Volts
Case Operating Temperature	TCASE	-40	25	+85	°C

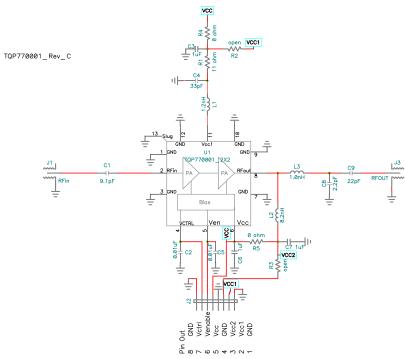
Note 1: No damage assuming only one parameter is set at a time with all other parameters set at or below nominal value.

Electrical Characteristics

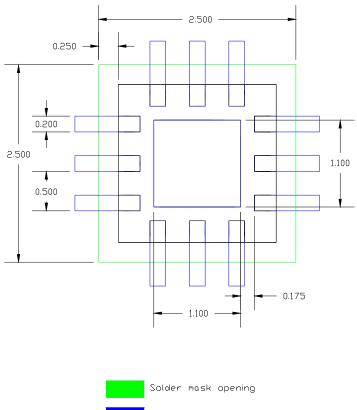

Conditions: Vcc = Vctrl = Ven = 3.3 V, Pin=-5dBm, TC = 25°C, with TRIQUINT Application Circuit, unless otherwise noted.

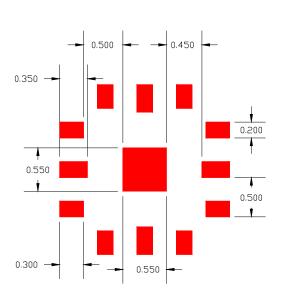
Parameter	Conditions	Min.	Typ/Nom	Max.	Units
RF Frequency		2.4		2.5	GHz
Gain	Pin= -25 dBm	25	27		dB
Gain variation over temperature	-40C to +85C; Pin= -25 dBm		±1		dB
Gain Flatness	Pin= -25 dBm		±0.5		dB
Input return loss	Pin= -25 dBm	8	9		dB
Output return loss	Pin= -25 dBm	10	14		dB
PA Off-State RF transmit power	$0 \text{ V} \leq \text{Vctrl} = \text{Ven } \leq 0.4 \text{ V}$			-25	dBm
PA On-State RF transmit power		19.5	22.0		dBm
Pout 1 dB Gain Compression			21		dBm
Harmonics (2 nd)	Pout=20 dBm		-55		dBc
Harmonics (3 rd)	Pout=20 dBm		-45		dBc
Spurious	Pout=20 dBm		-60		dBc
Ven = Venable = PA ON Voltage		3.0	3.3	3.6	V
Ven = Venable = PA ON Current				0.5	mA
Vctrl = Power control voltage		0.0		3.6	V
Vctrl = Power control current				0.5	mA
Supply voltage Vcc		3.0	3.3	3.6	V
Supply current			110	175	mA
Shutdown current	$0 \text{ V} \leq \text{Vctrl} = \text{Ven } \leq 0.4 \text{ V}$		0.5	10	μΑ

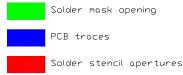
Pin Out and Assignments


Top View (X-ray)

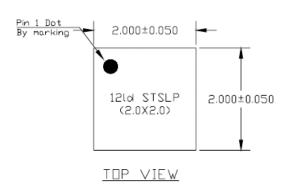
Pin #	Description	Function
1	NC or GND	No Connect
2	RF IN	RF input
3	NC or GND	No Connect
4	Vctrl	Amplifier Power/Gain/Current Control
5	Ven	Amplifier On/ Off
6	Vcc	Bias circuit Vcc
7	NC or GND	No Connect
8	RF OUT/Vcc2	RF output and second stage Vcc
9	NC or GND	No Connect
10	GND	Required ground
11	Vcc	First stage Vcc
12	NC or GND	No Connect
Back	Paddle ground connection	Required ground

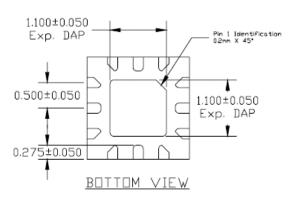

Application Circuit




Part	Description	Size	Comment
C1	9.1 pF ceramic cap	201	Provides DC block and input matching.
C2	0.01uF ceramic cap	201	Provides low frequency bypass at Vctrl.
C3	1.0uF ceramic cap	402	Provides low frequency bypass at Vcc1.
C4	33pF ceramic cap	201	Inter-stage matching, RF choke and RF bypass L1/C4.
C5	0.01uF ceramic cap	201	Provides low frequency bypass at Venable.
C6	1.0uF ceramic cap	402	Provides low frequency bypass at Vcc.
C7	1.0uF ceramic cap	402	Provides low frequency bypass at Vcc2.
C8	2.2pF ceramic cap	201	Provides output matching circuit C8/L3.
C9	22pF ceramic cap	201	Provides Dc blocking.
L1	1.2nH chip inductor	201	Inter-stage matching, RF choke and RF bypass L1/C4.
L2	8.2nH chip inductor	201	Provides RF choke at Vcc2.
L3	1.0 nH chip inductor	201	Provides output matching circuit C8/L3.
R1	11.0 Ohm chip resistor	201	Provides RF stability.
R2	0.0 Ohm chip resistor	402	DC jumper. Install to bias Vcc1 independently from Vcc and Vcc2.
R3	0.0 Ohm chip resistor	402	DC jumper. Install to bias Vcc2 independently from Vcc and Vcc2
R4	0.0 Ohm chip resistor	402	DC jumper. Install to connect Vcc1 bias to Vcc.
R5	0.0 Ohm chip resistor	402	DC jumper. Install to connect Vcc2 bias to Vcc.

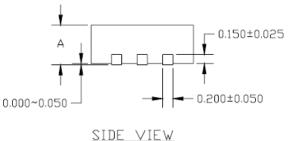
PC Board Layout Recommendations




Notes

- 1.) Only ground signal traces are allowed directly under the package
- 2.) Primary dimensions are in millimeters alternate dimensions are in inches.

Packaging Information



NOTE:

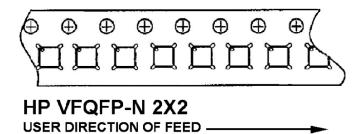
		STSLP
	MAX.	0.600
ΙΑ	N□M.	0.570
	MIN.	0.540

ALL MEASUREMENT IN (MM)

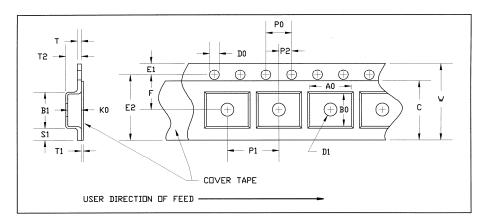
Packaging Marking Diagram

TOP MARK

LASER MARK


Line 1: 771 - Product code.

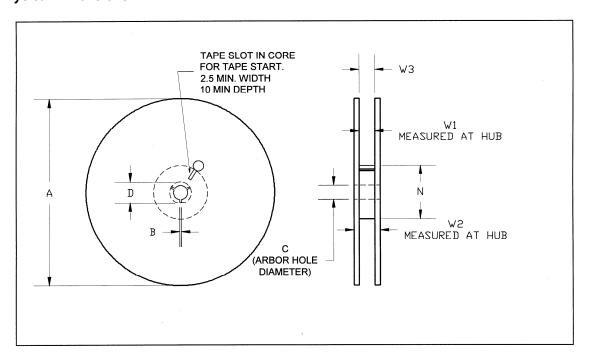
Line 2: XXX- Last 3 Char of TriQuint assembly lot number.



Tape and Reel Information:

Carrier Cover and Physical Tape Dimensions:

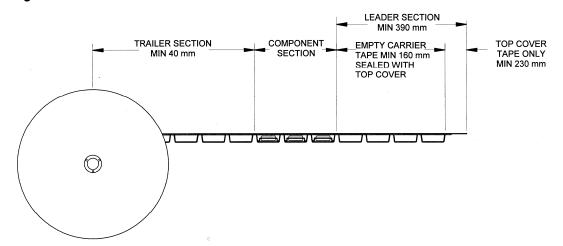
HP VFQFP-N 2x2 CARRIER AND COVER TAPE DIMENSIONS (See note 1)


PART	FEATURE	SYMBOL	SIZE (in)	SIZE (mm)
CAVITY	LENGTH	A0	0.091	2.30
	WIDTH	B0	0.091	2.30
	DEPTH	K0	0.047	1.20
	PITCH	P1	0.157	4.00
DISTANCE BETWEEN	CAVITY TO PERFORATION LENGTH DIRECTION	P2	0.079	2.00
CENTERLINE	CAVITY TO PERFORATION WIDTH DIRECTION	F	0.138	3.50
COVER TAPE	WIDTH	С	0.213	5.40
CARRIER TAPE	WIDTH	W	0.315	8.00

NOTES -

 HP VFQFP-N is the JEDEC nomenclature for the leadless package family defined in MO-220. Equivalent vendor specific nomenclature for packages based on MO-220 include; MLF (AMKOR), MLP (Carsem), SLP (Unisem), QLP (STATS), LPCC (ASAT) and others.

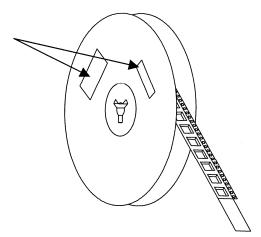
Reel Physical Dimensions:



Reel Dimensions for 8mm Carrier Tape – 7" Reel

HP VFQFP-N 2X2		7" Reel		
PART	FEATURE	SYMBOL	SIZE (in)	SIZE (mm)
FLANGE	DIAMETER	Α	6.969	177.0
	THICKNESS	W2	0.559	14.2
	SPACE BETWEEN FLANGE	W1	0.346	8.8
HUB	OUTER DIAMETER	Ν	4.016	102.0
	ARBOR HOLE DIAMETER	С	0.512	13.0
	KEY SLIT WIDTH	В	0.079	2.0
	KEY SLIT DIAMETER	D	0.787	20.0

Tape Length and Label Placement:


Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A

Product label, Mfg Label and ESD label are placed on the flange opposite to the sprockets in the carrier tape

Reel Quantity: 2,500 units

Additional Information 1

This part is compliant with RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). The part is rated Moisture Sensitivity Level 1 at 260 ℃ per JEDEC standard IPC/JEDEC J-STD-020.

¹ For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000

Email: info_wireless@tqs.com Fax: (503) 615-8902

For technical questions and additional information on specific applications:

Email: info_wireless@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party.

TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

Copyright @ 2006 TriQuint Semiconductor, Inc. $\,$ All rights reserved