DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT #PC3221GV

GENERAL PURPOSE 5 V 100 MHz AGC AMPLIFIER

DESCRIPTION

The μ PC3221GV is a silicon monolithic IC designed for use as AGC amplifier for digital CATV, cable modem systems. This IC consists of gain control amplifier and video amplifier.

The package is 8-pin SSOP suitable for surface mount.

This IC is manufactured using our 10 GHz f τ NESAT II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

Low distortion : IM₃ = 56 dBc TYP. @ single-ended output, V_{out} = 0.7 V_{p-p}/tone

Low noise figure : NF = 4.2 dB TYP.

Wide AGC dynamic range : GCR = 50 dB TYP. @ input prescribe
 On-chip video amplifier : Vout = 1.0 Vp-p TYP. @ single-ended output

Supply voltage : Vcc = 5.0 V TYP.
 Packaged in 8-pin SSOP suitable for surface mounting

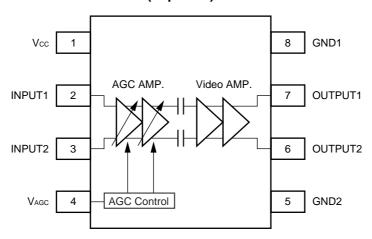
APPLICATION

• Digital CATV/Cable modem receivers

ORDERING INFORMATION

Part Number	Package	Supplying Form
μPC3221GV-E1	8-pin plastic SSOP (4.45 mm (175))	 Embossed tape 8 mm wide Pin 1 indicates pull-out direction of tape Qty 1 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: μ PC3221GV

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS

(Top View)

PRODUCT LINE-UP OF 5 V AGC AMPLIFIER

Part Number	Icc (mA)	G _{мах} (dB)	G _{MIN} (dB)	GCR (dB)	NF (dB)	IM ₃ (dBc) Note	Package
μPC3217GV	23	53	0	53	6.5	50	8-pin SSOP (4.45 mm (175))
μPC3218GV	23	63	10	53	3.5	50	
μPC3219GV	36.5	42.5	0	42.5	9.0	58	
μPC3221GV	33	60	10	50	4.2	56	

 $\textbf{Note} \hspace{0.2cm} f_1 = 44 \hspace{0.1cm} \text{MHz}, \hspace{0.1cm} f_2 = 45 \hspace{0.1cm} \text{MHz}, \hspace{0.1cm} V_{\text{out}} = 0.7 \hspace{0.1cm} V_{\text{p-p}} / \text{tone}, \hspace{0.1cm} \text{single-ended output}$

PIN EXPLANATIONS

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) Note	Function and Application	Internal Equivalent Circuit
1	Vcc	4.5 to 5.5	-	Power supply pin. This pin should be externally equipped with bypass capacitor to minimize ground impedance.	
2	INPUT1	-	1.29	Signal input pins to AGC amplifier. This pin should be coupled with capacitor for DC cut.	AGC Control
3	INPUT2	I	1.29		2 5 3
4	Vagc	0 to Vcc	-	Gain control pin. This pin's bias govern the AGC output level. Minimum Gain at V _{AGC} : 0 to 0.5 V Maximum Gain at V _{AGC} : 3 to 3.5 V Recommended to use AGC voltage with externally resister (example: 1 k Ω).	AGC Amp.
5	GND2	0	-	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
6	OUTPUT2	-	2.28	Signal output pins of video amplifier. This pin should be coupled with capacitor for DC cut.	
7	OUTPUT1	-	2.28		8
8	GND1	0	-	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All ground pins must be connected together with wide ground pattern to decrease impedance difference.	

Note Pin voltage is measured at Vcc = 5.0 V.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	6.0	V
Gain Control Voltage Range	Vagc	T _A = +25°C	0 to Vcc	V
Power Dissipation	PD	$T_A = +85^{\circ}C$ Note	250	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc		4.5	5.0	5.5	V
Operating Ambient Temperature	TA	Vcc = 4.5 to 5.5 V	-40	+25	+85	°C
Gain Control Voltage Range	Vagc		0	1	3.5	V
Operating Frequency Range	fвw		10	45	100	MHz

4

ELECTRICAL CHARACTERISTICS

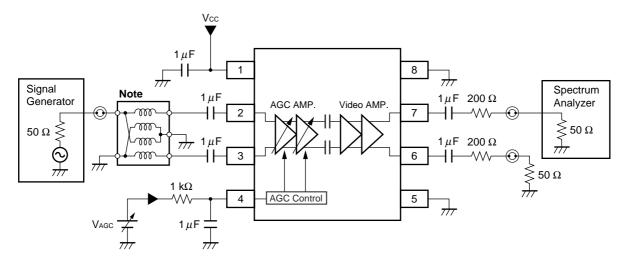
(TA = +25°C, Vcc = 5 V, f = 45 MHz, Zs = 50 Ω , ZL = 250 Ω , single-ended output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
DC Characteristics							
Circuit Current	Icc	No input signal	Note 1	26	33	41	mA
AGC Pin Current	IAGC	No input signal, V _{AGC} = 3.5 V	Note 1	_	16	50	μΑ
AGC Voltage High Level	VAGC (H)	@ Maximum gain	Note 1	3.0	_	3.5	V
AGC Voltage Low Level	VAGC (L)	@ Minimum gain	Note 1	0	1	0.5	V
RF Characteristics							
Maximum Voltage Gain	Gмах	Vagc = 3.0 V, Pin = -60 dBm	Note 1	57	60	63	dB
Middle Voltage Gain 1	G мід 1	Vagc = 2.2 V, Pin = -60 dBm	Note 1	47.5	50.5	53.5	dB
Middle Voltage Gain 2	Gмід2	Vagc = 1.2 V, Pin = -30 dBm	Note 1	18	21	24	dB
Minimum Voltage Gain	Gmin	Vagc = 0.5 V, Pin = -30 dBm	Note 1	6	10	14	dB
Gain Control Range (input prescribe)	GCRin	Vagc = 0.5 to 3.0 V	Note 1	43	50	_	dB
Gain Control Range (output prescribe)	GCRout	V _{out} = 1.0 V _{p-p}	Note 1	36	40	-	dB
Gain Slope	Gslope	Gain (@ V _{AGC} = 2.2 V) - Gain (= 1.2 V)	@ V _{AGC}	26.5	29.5	32.5	dB/V
Maximum Output Voltage	Voclip	V _{AGC} = 3.0 V (@ Maximum gain	n) Note 1	2.0	2.8	-	V _{p-p}
Noise Figure	NF	V _{AGC} = 3.0 V (@ Maximum gain	n) Note 3	-	4.2	5.7	dB
3rd Order Intermodulation Distortion 1	IM ₃ 1	$f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, Z_L = 20$ $P_{in} = -30 \text{ dBm/tone},$ $V_{out} = 0.7 \text{ V}_{p\text{-}p\text{/tone}} \text{ (@ single-error output)}$,	43	47	-	dBc
3rd Order Intermodulation Distortion 2	IM ₃ 2	$f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, Z_L = 20 \text{ V}$ $V_{AGC} = 3.0 \text{ V (@ Maximum gain V}$ $V_{Out} = 0.7 \text{ V}_{P\text{-}P}/\text{tone (@ single-error output)}$	n),	50	56	=	dBc
Gain Difference of OUTPUT1 and OUTPUT2	∆G	$V_{AGC} = 3.0 \text{ V, Pin} = -60 \text{ dBm,}$ $\Delta G = G \text{ (@ Pout1)} - G \text{ (@ Pout2)}$ No	ote 1, 2	-0.5	0	+0.5	dB

Notes 1. By measurement circuit 1

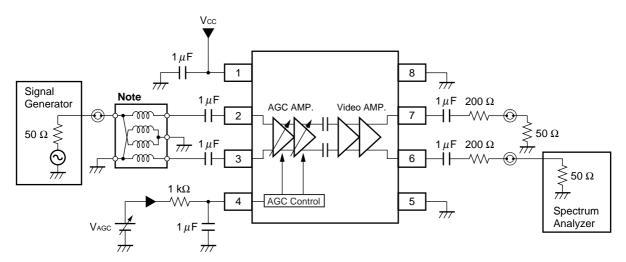
- 2. By measurement circuit 2
- 3. By measurement circuit 3

5

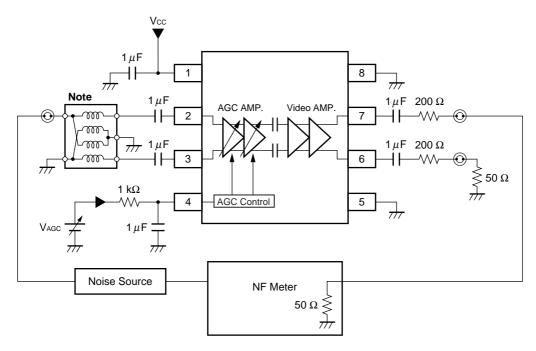

STANDARD CHARACTERISTICS (Ta = +25°C, Vcc = 5 V, Zs = 50 Ω)

Parameter	Symbol	Test Conditions	Reference Value	Unit
Noise Figure 2	NF2	Gain reduction = -10 dBm Note 2	6.0	dB
Noise Figure 3	NF3	Gain reduction = -20 dBm Note 2	9.5	dB
Output Voltage	Vout	Pin = -56 to -16 dBm Note 1	1.0	V _{p-p}
Input Impedance	Zin	Vagc = 0.5 V, f = 45 MHz Note 3	0.9 k – j1.4 k	Ω
Output Impedance	Zout	Vagc = 0.5 V, f = 45 MHz Note 3	9.0 + j1.9	Ω
Input 3rd Order Distortion Intercept Point	IIP ₃	$\begin{aligned} \text{V}_{\text{AGC}} &= 0.5 \text{ V (@ Minimum gain),} \\ \text{f}_1 &= 44 \text{ MHz, f}_2 = 45 \text{ MHz,} \\ Z_{\text{L}} &= 250 \Omega \text{ (@ single-ended output)} \end{aligned}$	+2.5	dBm

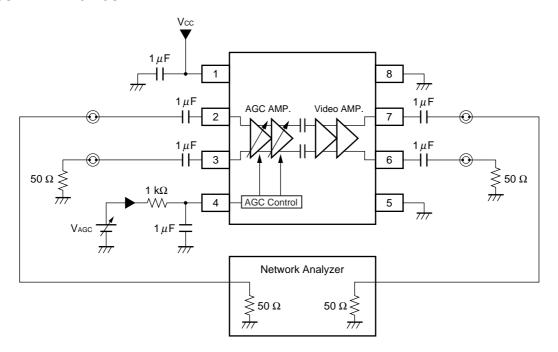
Notes 1. By measurement circuit 1


- 2. By measurement circuit 3
- 3. By measurement circuit 4

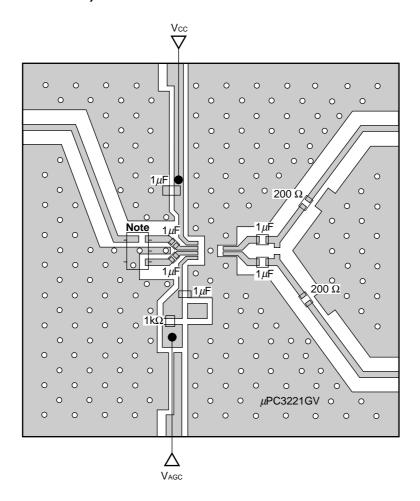
MEASUREMENT CIRCUIT 1


Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 2


Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 3

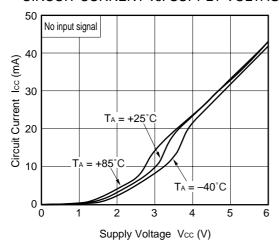

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 4

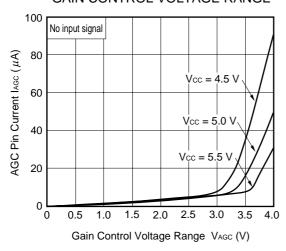
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

★ ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD (MEASUREMENT CIRCUIT 1)

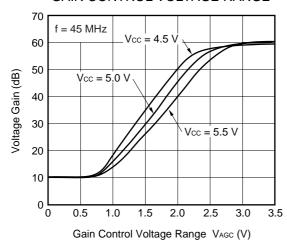
Note Balun Transformer


Remarks

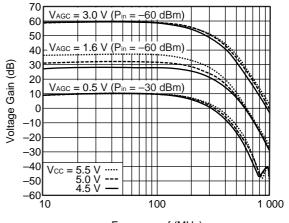
Back side: GND pattern
 Solder plated on pattern


3. o: Through hole

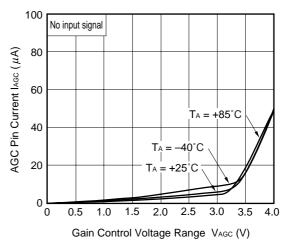
★ TYPICAL CHARACTERISTICS (T_A = +25°C , unless otherwise specified)


CIRCUIT CURRENT vs. SUPPLY VOLTAGE

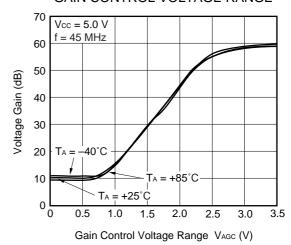
AGC PIN CURRENT vs. GAIN CONTROL VOLTAGE RANGE



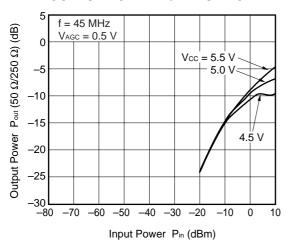
VOLTAGE GAIN vs.
GAIN CONTROL VOLTAGE RANGE

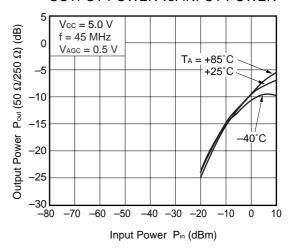

Remark The graphs indicate nominal characteristics.

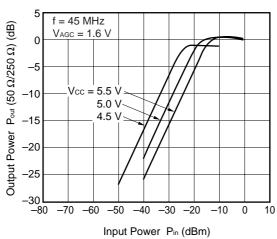
VOLTAGE GAIN vs. FREQUENCY

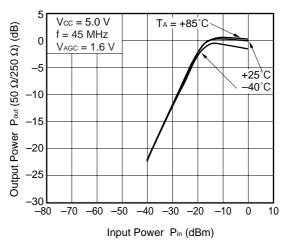


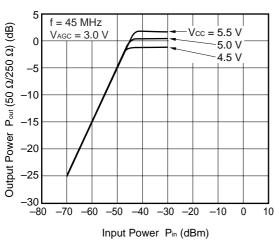
Frequency f (MHz)

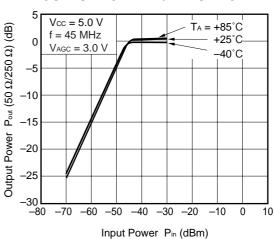

AGC PIN CURRENT vs. GAIN CONTROL VOLTAGE RANGE


VOLTAGE GAIN vs.
GAIN CONTROL VOLTAGE RANGE

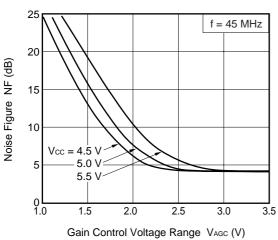

OUTPUT POWER vs. INPUT POWER


OUTPUT POWER vs. INPUT POWER

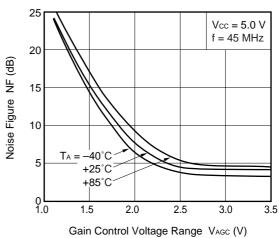

OUTPUT POWER vs. INPUT POWER


OUTPUT POWER vs. INPUT POWER

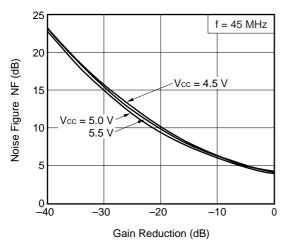
OUTPUT POWER vs. INPUT POWER

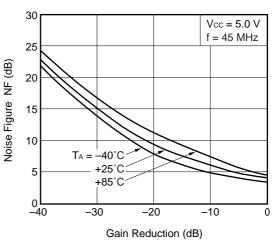


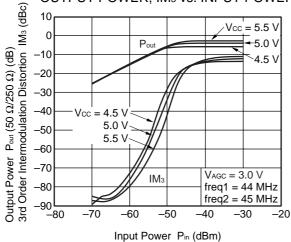
OUTPUT POWER vs. INPUT POWER

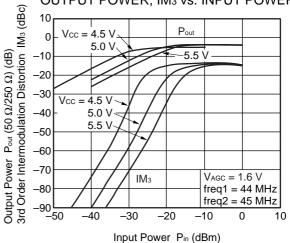


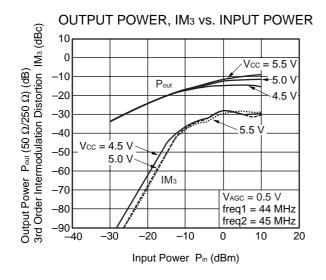
Remark The graphs indicate nominal characteristics.

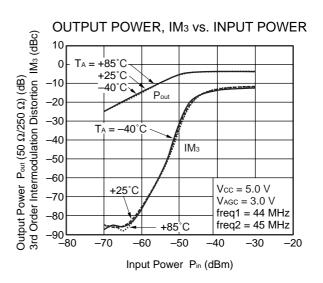

NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE

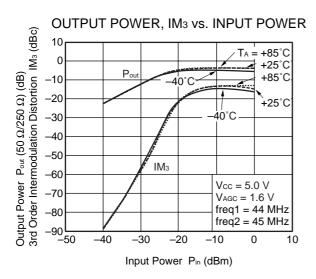

NOISE FIGURE vs. GAIN CONTROL VOLTAGE RANGE

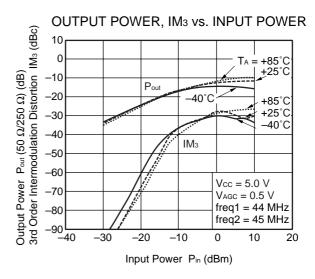

NOISE FIGURE vs. GAIN REDUCTION

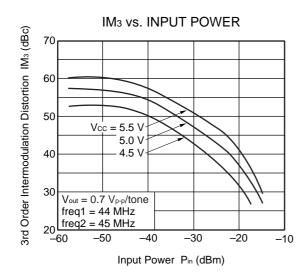

NOISE FIGURE vs. GAIN REDUCTION

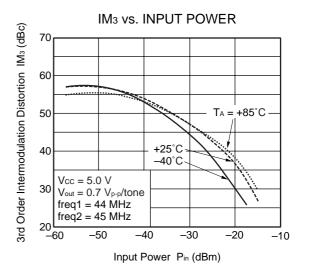

OUTPUT POWER, IM3 vs. INPUT POWER

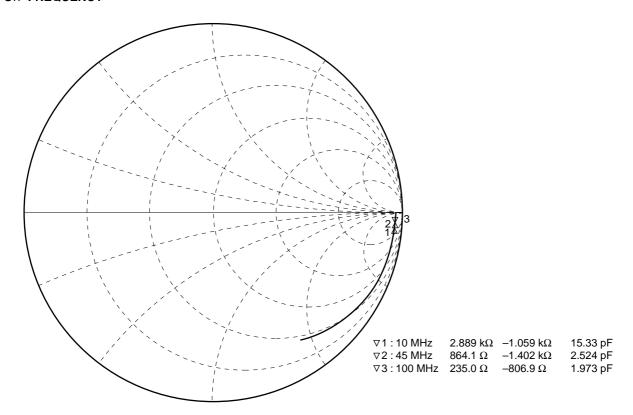


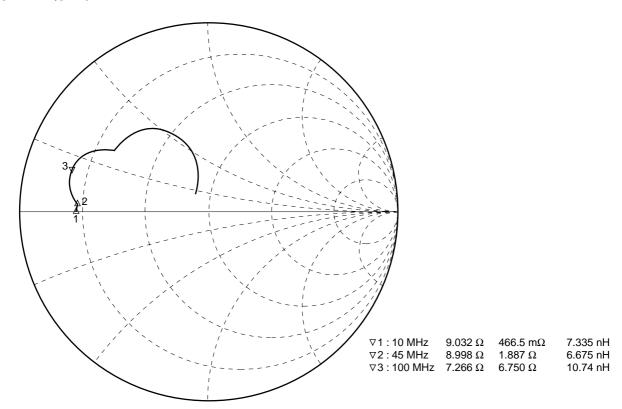

OUTPUT POWER, IM3 vs. INPUT POWER




Remark The graphs indicate nominal characteristics.

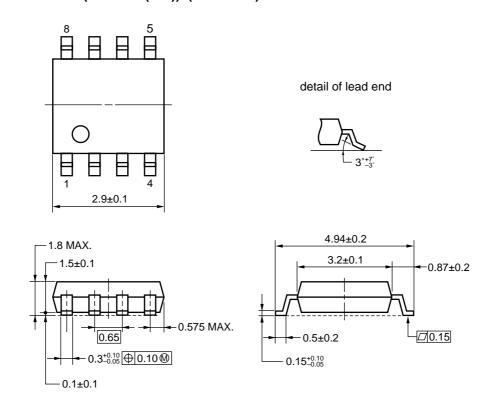





Remark The graphs indicate nominal characteristics.

★ S-PARAMETERS (TA = +25°C, Vcc = VAGC = 5.0 V)

S₁₁-FREQUENCY



S₂₂-FREQUENCY

PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS Note	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Note Excluding lead-free products

Caution Do not use different soldering methods together (except for partial heating).

NEC μ PC3221GV

The information in this document is current as of July, 2004. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

NEC μ PC3221GV

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical)

Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279