ALM-1412 1.575 GHz GPS Low Noise Amplifier with Integrated Filter and Variable Current/Shutdown Function

Description

Avago Technologies' ALM-1412 is an LNA module, with integrated filter, designed for GPS band applications at 1.575GHz. The LNA uses Avago Technologies' proprietary GaAs Enhancement-mode pHEMT process to achieve high gain with very low noise figure and high linearity. Noise figure distribution is very tightly controlled. A CMOS-compatible shutdown pin is included either for turning the LNA on/off, or for current adjustment. The integrated filter utilizes an Avago Technologies' leadingedge FBAR filter for exceptional rejection at Cell/PCS-Band frequencies.

The ALM-1412 is useable down to 1 V operation. It achieves low noise figure, high gain and linearity even at 1 V, making it suitable for use in critical low-power GPS applications or during low-battery situations.

Application

• GPS Band LNA

Component Image

Note:

Package marking provides orientation and identification "1412" = Product Code

"YY" = Year of manufacture

"WW" = Work Week of manufacture

Features

- Very Low Noise Figure: 0.82 dB typical
- High Gain: 13.5 dB typical
- High IIP3 and IP1dB
- Exceptional Cell/PCS-Band rejection
- Advanced GaAs E-pHEMT Technology
- Low external component count
- Wide Supply Voltage: 1 V to 3.6 V
- Shutdown current: < 0.1 µA
- CMOS compatible shutdown pin (SD) current @ 2.8 V: 0.1 mA
- Adjustable current via single external resistor/voltage
- Meets MSL3 and Lead-Free
- ESD-protected RF input: 3 kV HBM
- Small package dimension: 3.3(L)x2.1(W)x1.1(H) mm³

Specifications (Typical Performance at 25°C)

At 1.575 GHz, Vdd = 2.85 V, Idd = 8.0 mA

- Gain = 13.5 dB
- NF = 0.82 dB
- IIP3 = +7.0 dBm, IP1dB = +2.7 dBm
- S11 = -8.4 dB, S22 = -12.3 dB
- Cell-Band Rejection: 54 dBc
- PCS-Band Rejection: 63 dBc

At 1.575 GHz, 1.0 V supply

- S21 = 8.8 dB
- NF = 1.22 dB
- Idd = 1.9 mA

Attention: Observe precautions for handling electrostatic sensitive devices. For RF_IN (Pin 1): ESD Human Body Model = 3 kV All other pins: ESD Machine Model = 40 V ESD Human Body Model = 300 V Refer to Avago Technologies Application Note A004R: Electrostatic Discharge, Damage and Control

Absolute Maximum Rating^[1] $T_A = 25^{\circ}C$

Symbol	Parameter	Units	Absolute Max.
Vdd	Device Drain to Source Voltage ^[2]	V	3.6
Idd	Drain Current ^[2]	mA	20
P _{in,max}	CW RF Input Power (Vdd = 2.85 V, Idd = 9.0 mA)	dBm	15
Pdiss	Total Power Dissipation ^[4]	mW	72
Tj	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance^[3] (Vdd = 2.85 V,
Idd = 9 mA),
$$\theta_{jc} = 352.2^{\circ}$$
C/W

Notes:

1. Operation of this device in excess of any of these limits may cause permanent damage.

2. Assuming DC quiescent conditions.

3. Thermal resistance measured using

Infra-Red measurement technique.

4. Board (module belly) temperature $T_B\, is$

25°C. Derate 2.84 mW/°C for $T_B > 125$ °C.

Product Consistency Distribution Charts [5, 6]

Figure 1. Gain at 1.575 GHz; LSL = 11.0 dB, nominal = 13.5 dB

Figure 3. Idd at 1.575 GHz; nominal = 8.0mA, USL = 15 mA

Figure 2. NF at 1.575 GHz; nominal = 0.82 dB, USL = 1.2 dB

Figure 4. Cell Band Rejection at 827.5 MHz relative to 1.575 GHz; nominal = 54 dBc, LSL = 45 dBc

Figure 5. PCS Band Rejection at 1885 MHz relative to 1.575 GHz; nominal = 63 dBc, LSL = 45 dBc

Notes:

5. Distribution data sample size is 6000 samples taken from 2 different LNA wafer lots and 3 different filter wafer lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.

6. Measurements are made on a production test board, which represents a trade-off between optimal Gain, NF, IIP3, IP1dB, VSWR, Cell Band and PCS Band Rejection. Circuit trace losses have not been de-embedded from actual measurements.

Electrical Specifications

 $T_A = 25^{\circ}$ C, Vdd = +2.85V, Vsd = +2.6V, Idd = 8mA (typ), R2 = 10 k Ω , Freq = 1.575GHz - Typical Performance ^[8] unless otherwise specified.

Symbol	Parameter and Test Condition	Units	Min.	Тур	Max.
G	Gain	dB	11	13.5	-
NF ^[7]	Noise Figure	dB	-	0.82	1.2
IP1dB	Input 1 dB Compressed Power	dBm	-	2.7	-
IIP3 ^[9]	Input 3rd Order Intercept Point (2-tone @ fc \pm 2.5 MHz)	dBm	-	7.0	-
S11	Input Return Loss	dB	-	-8.4	-
S22	Output Return Loss	dB	-	-12.3	-
S12	Reverse Isolation	dB	-	-23	-
Cell Band Rejection	Relative to 1.575 GHz @ 827.5 MHz	dBc	45	54	-
PCS Band Rejection	Relative to 1.575 GHz @ 1885 MHz	dBc	45	63	-
Idd	Supply DC current at Shutdown (SD) Voltage Vsd = 2.6 V	mA	-	8.0	15
lsh	Shutdown Current @ Vsd = 0 V	μA	-	0.1	-

Table 1. Performance Table at Nominal Operating Conditions

 $T_A = 25^{\circ}$ C, Vdd = +2.85V, Vsd = +1.8V, Idd = 4.5mA (typ), R2 = 10 k Ω , Freq = 1.575GHz - Typical Performance^[8] unless otherwise specified.

Parameter and Test Condition	Units	Тур.
Gain	dB	12.2
Noise Figure	dB	0.94
Input 1 dB Compressed Power	dBm	4.5
Input 3rd Order Intercept Point (2-tone @ fc \pm 2.5 MHz)	dBm	5.7
Input Return Loss	dB	-7
Output Return Loss	dB	-10.6
Reverse Isolation	dB	-22.6
Relative to 1.575 GHz @ 827.5 MHz	dBc	55
Relative to 1.575 GHz @ 1885 MHz	dBc	61
Supply DC Current at Shutdown (SD) Voltage Vsd = 1.8 V	mA	4.5
Shutdown Current @ Vsd = 0 V	μΑ	0.1
	Parameter and Test ConditionGainNoise FigureInput 1 dB Compressed PowerInput 3rd Order Intercept Point (2-tone @ fc ± 2.5 MHz)Input Return LossOutput Return LossOutput Return LossReverse IsolationRelative to 1.575 GHz @ 827.5 MHzRelative to 1.575 GHz @ 1885 MHzSupply DC Current at Shutdown (SD) Voltage Vsd = 1.8 VShutdown Current @ Vsd = 0 V	Parameter and Test ConditionUnitsGaindBNoise FiguredBInput 1 dB Compressed PowerdBmInput 3rd Order Intercept Point (2-tone @ fc ± 2.5 MHz)dBmInput Return LossdBOutput Return LossdBReverse IsolationdBRelative to 1.575 GHz @ 827.5 MHzdBcSupply DC Current at Shutdown (SD) Voltage Vsd = 1.8 VmAShutdown Current @ Vsd = 0 VµA

Table 2. Typical Performance at Vdd = +2.85V, Vsd = +1.8V, Idd = 4.5mA (typ)

Notes:

7. For noise figure measurement, input board loss has not been deducted.

8. Measurements at 1.575 GHz obtained using demo board described in Figures 6 and 7.

9. 1.575 GHz IIP3 test condition: F_{RF1} = 1572.5 MHz, F_{RF2} = 1577.5 MHz with input power of -20 dBm per tone measured at the worst case side band.

Vdd = +2 V, Vdd = +1.5 V, Vdd = +1 V, Freq = 1.575 GHz – Typical Performance^[8] (Vsd = Vdd, R2 = 0 ohms)

Symbol	Parameter and Test Condition	Units	Vdd = 2 V	Vdd = 1.5 V	Vdd = 1 V
G	Gain	dB	13.3	12.2	8.8
NF ^[7]	Noise Figure	dB	0.79	0.88	1.22
IP1dB	Input 1 dB Compressed Power	dBm	-0.8	-1.5	-1.6
IIP3 ^[9]	Input 3rd Order Intercept Point (2-tone @ fc ± 2.5 MHz)	dBm	8.4	6.3	4.8
S11	Input Return Loss	dB	-8.8	-7.4	-4.8
S22	Output Return Loss	dB	-12.4	-10.7	-7.8
S12	Reverse Isolation	dB	-21.3	-20.2	-17.7
Cell Band Rejection	Relative to 1.575 GHz @ 827.5 MHz	dBc	52.4	54.3	54.8
PCS Band Rejection	Relative to 1.575 GHz @ 1885 MHz	dBc	65.4	64.5	64.2
Idd	Supply DC Current	mA	9.8	5.6	1.9
lsh	Shutdown Current @ Vsd = 0 V	μΑ	0.1	0.1	0.1

Table 3. Typical Performance at Low Operating Voltages with R2 (See Figures 6 and 7) Set to 0 ohm	S
---	---

Notes:

7. For noise figure measurement, input board loss has not been deducted.

8. Measurements at 1.575 GHz obtained using demo board described in Figures 6 and 7.

9. 1.575 GHz IIP3 test condition: F_{RF1} = 1572.5 MHz, F_{RF2} = 1577.5 MHz with input power of -20 dBm per tone measured at the worst case side band.

DC Pin Configuration of 4-pin Connector

Pins pointing out of the page	Pins 1, 4 - GND Pin 2 = Shutdown (SD) Pin 2 = Vdd Swedy
	Pin 3 = Vdd Supply

Circuit Symbol	Size	Description
L1	0402	Not Used
L2	0402	6.8 nH Inductor (Toko)
L3	0402	5.6 nH Inductor (Toko)
C1	0805	0.1 µF Capacitor (Murata)
C2	0402	10 pF Capacitor (Rohm)
C3	0402	6.8 pF Capacitor (Rohm)
C9	0402	100 pF Capacitor (Rohm)
R1	0402	12 Ohms Resistor (Rohm)
R2	0402	10k Ohms Resistor (Rohm)
Z1	0805	Not Used

Figure 6. Demoboard and application circuit components table

Figure 7. Demoboard and application schematic diagram

Notes:

- The demoboard of Figure 6 is Rogers® RO4350 with typical Dk=3.48 (@10GHz).
- L3 and the module's internal input pre-match form the input matching network. The module has built-in DC-blocking capacitors at the input and output.
- This circuit demonstrates that very low noise figure is obtainable with standard 0402 chip inductors instead of high-Q wirewound inductors.
- C2 and L2 form a matching network at the output of the LNA stage, which can be tuned to optimize gain and return loss. For example, higher gain can be obtained by increasing the value of C2 but at the expense of stability. Changing the value of L2 can improve the PCS rejection, but impacts output return loss.
- L1 is a choke which isolates the demoboard from external disturbances during measurement. It is not needed in actual application. Likewise, C1 and C3 mitigate the effect of external noise pickup on the Vdd and SD lines respectively. These components are not required in actual operation.
- R1 is a stability-enhancing resistor.
- C9 is a DC-blocking capacitor. It is also not required in actual operation.
- Bias control is achieved by either varying the SD voltage (Vsd) with/without R2, or fixing the SD voltage to Vdd and adjusting R2 for the desired current. Typical value for R2 is 10k Ohms for 8 mA total current at Vdd = 2.85 V and Vsd = +2.60 V. For applications where it is more appropriate to have SD (Vsd) connected to Vdd, a 12 k Ohms resistor value for R2 is suggested (where Vdd = 2.85 V).
- For low-voltage operation such as Vdd = 1.5 V or 1.0 V, R2 may be omitted and SD (Vsd) connected directly to Vdd.
- The grounding regime for the ALM-1412 is critical to achieving the PCS- and Cell-Band Rejections shown in Figure 9. Please refer to the PCB Land Patterns section of this document for the exact locations of the grounding vias.

ALM-1412 Typical Performance Curves, Vdd = +2.85 V, Vsd = +2.6V, Idd = 8mA (typ) (at 25°C unless specified otherwise)

Figure 8. Typical S-Parameter plot

Figure 9. Multiple module plots of rejecton at Cell and PCS Bands

1.2

8 7 5mA 8mA 6 11mA 5 IP1dB (dBm) 4 3 2 1 0 2.5 2.6 2.7 2.8 2.9 3.1 3.2 3.3 2.4 3.0 Vdd (V)

Figure 12. IIP3 vs. Vdd vs. Idd

Figure 10. Gain vs. Vdd vs. Idd

Figure 14. Idd vs. Vsd (Vdd = 2.85 V)

ALM-1412 Typical Performance Curves, $R2 = 10 \text{ k}\Omega$ (at 25°C unless specified otherwise)

Figure 15. Cell band rejection vs. Vdd vs. Idd

Figure 16. PCS band rejection vs. Vdd vs. Idd

5mA

8mA

11mA

Figure 21. Cell band rejection vs. Vdd vs. Temp (Idd = 8 mA)

Figure 18. NF vs. Vdd vs. Temp (Idd = 8 mA)

Figure 20. IP1dB vs. Vdd vs. Temp (Idd = 8 mA)

Figure 22. PCS band rejection vs. Vdd vs. Temp (Idd = 8 mA)

ALM-1412 Scattering Parameter and Noise Parameter Measurement

Figure 23. Scattering and noise parameter reference planes

ALM-1412 Typical Scattering Parameters at 25°C, Vdd = 2.85 V, Vsd = +2.6V, Idd = 8mA (typ)

The S- and Noise Parameters are measured using the PCB described in Figures 6 and 7. The PCB material is 10 mils Rogers[®] RO4350. Figure 23 shows the input and output reference planes. The circuit values, with the exception of L3, are as indicated in Figure 6.

Freq.	S11	S11	S21	S21	S21	S12	S12	S22	S22
(GHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Ang.	Mag.	Ang.
0.3	0.9414	51.75	-49.77	0.0032	-82.50	-59.00	84.27	1.0023	-37.50
0.5	0.9810	14.17	-43.75	0.0065	-131.02	-60.91	54.30	1.0081	-62.37
0.7	0.9591	-10.49	-41.23	0.0087	178.63	-63.01	87.77	1.0077	-88.32
0.8	0.9388	-19.17	-42.09	0.0079	147.58	-64.55	123.93	1.0022	-100.80
0.8275	0.9413	-21.42	-40.90	0.0090	146.27	-62.48	-178.15	1.0000	-103.57
0.9	0.9349	-27.77	-41.36	0.0086	112.88	-56.91	-170.87	1.0069	-113.18
1.0	0.9441	-36.81	-40.49	0.0095	89.73	-74.17	-165.29	1.0017	-126.25
1.1	0.9572	-45.08	-38.82	0.0115	78.49	-67.03	-161.43	0.9907	-139.12
1.2	0.9507	-57.62	-39.07	0.0111	156.91	-59.29	-160.46	0.9923	-152.69
1.3	0.9015	-68.40	-39.84	0.0102	146.64	-60.70	-160.88	0.9829	-166.42
1.4	0.7906	-80.81	-45.10	0.0056	146.20	-55.58	168.45	0.9680	176.91
1.5	0.6713	-82.27	-34.14	0.0196	112.86	-54.66	155.19	0.7419	152.58
1.575	0.7112	-78.76	11.00	3.5490	-179.44	-24.28	141.36	0.2017	8.18
1.6	0.8218	-80.17	4.62	1.7030	16.26	-31.07	-119.97	0.5525	-118.95
1.7	0.6027	-96.78	-46.90	0.0045	-76.04	-59.93	165.69	0.9574	170.98
1.8	0.5047	-98.62	-51.12	0.0028	137.34	-54.87	152.40	0.9564	153.50
1.885	0.4471	-97.54	-48.14	0.0039	125.57	-51.80	147.55	0.9561	140.48
1.9	0.4373	-96.29	-46.03	0.0050	117.45	-53.03	145.64	0.9492	138.24
2.0	0.3906	-98.29	-42.75	0.0073	110.90	-53.46	146.79	0.9488	135.73
2.1	0.3534	-98.68	-39.84	0.0102	100.81	-54.69	145.47	0.9501	132.67
2.2	0.3250	-97.55	-37.92	0.0127	90.59	-52.67	145.94	0.9493	130.76
2.3	0.3017	-97.11	-36.71	0.0146	82.48	-50.18	140.43	0.9475	126.47
2.4	0.2839	-97.10	-35.73	0.0164	74.79	-51.46	138.69	0.9514	123.07
2.5	0.2674	-97.35	-35.47	0.0169	67.94	-48.85	136.17	0.9488	115.08
3.0	0.2097	-95.65	-44.33	0.0061	47.58	-46.49	71.43	0.9164	81.72
3.5	0.1691	-179.25	-19.72	0.1032	50.34	-46.47	42.11	0.8395	54.36
4.0	0.1230	-115.88	-6.17	0.4912	6.00	-28.93	-1.39	0.6672	4.25
4.5	0.1062	62.61	-2.49	0.7511	-31.75	-21.92	-38.31	0.6478	-111.97
5.0	0.2175	95.87	-1.53	0.8390	-75.46	-19.00	-79.92	0.6836	174.58

Freq.	S11	S11	S21	S21	S21	S12	S12	S22	S22
(GHz)	Mag.	Ang	(dB)	Mag.	Ang.	(dB)	Ang.	Mag.	Ang.
0.3	0.9364	50.71	-53.96	0.0020	-75.83	-61.10	117.42	1.0036	-67.48
0.5	0.9751	15.23	-46.49	0.0047	-108.30	-60.19	130.25	1.0091	-92.35
0.7	0.9673	-6.10	-43.23	0.0069	172.32	-60.93	153.21	1.0081	-118.06
0.8	0.9594	-17.41	-44.12	0.0062	158.60	-65.24	157.05	1.0065	-130.84
0.8275	0.9620	-18.73	-42.71	0.0073	151.74	-64.92	160.63	1.0044	-143.78
0.9	0.9561	-25.18	-43.36	0.0068	143.86	-68.55	167.31	1.0109	-153.10
1.0	0.9702	-33.12	-42.08	0.0079	131.02	-69.59	168.93	1.0014	-156.24
1.1	0.9853	-45.50	-40.02	0.0100	102.19	-63.56	-167.21	0.9951	-159.18
1.2	0.9832	-55.01	-39.99	0.0100	83.16	-60.26	-164.86	0.9880	-162.29
1.3	0.9174	-66.05	-40.58	0.0094	158.44	-57.20	-168.56	0.9810	-166.49
1.4	0.7806	-74.79	-46.41	0.0048	144.44	-58.60	172.11	0.9707	176.62
1.5	0.6815	-75.29	-35.60	0.0166	113.76	-55.03	148.58	0.7437	152.64
1.575	0.7590	-67.75	9.47	2.9746	-173.00	-23.78	95.42	0.2765	36.80
1.6	0.8472	-77.47	3.74	1.5389	25.43	-29.97	-153.49	0.5556	-77.55
1.7	0.5954	-90.66	-47.04	0.0044	-87.32	-65.08	167.45	0.9606	160.90
1.8	0.5238	-88.12	-51.13	0.0028	147.21	-54.74	163.04	0.9551	143.44
1.885	0.4902	-88.21	-48.17	0.0039	125.81	-53.26	161.83	0.9588	131.24
1.9	0.4849	-88.08	-48.81	0.0036	122.10	-52.38	159.39	0.9499	129.02
2.0	0.4619	-89.75	-44.66	0.0059	117.06	-55.18	158.23	0.9509	125.92
2.1	0.4440	-91.88	-41.53	0.0084	109.11	-57.03	157.00	0.9500	122.66
2.2	0.4287	-92.90	-39.49	0.0106	103.36	-50.38	156.56	0.9506	119.90
2.3	0.4139	-93.21	-38.54	0.0118	100.64	-50.53	155.91	0.9502	116.38
2.4	0.4020	-93.65	-37.61	0.0132	95.20	-51.69	144.89	0.9528	113.17
2.5	0.3893	-94.26	-37.18	0.0138	84.68	-50.37	143.27	0.9480	110.07
3.0	0.3157	-97.95	-45.77	0.0051	50.49	-45.39	93.11	0.9165	88.75
3.5	0.2328	-128.95	-21.05	0.0886	35.94	-47.72	37.99	0.8401	44.39
4.0	0.1727	-150.95	-7.39	0.4273	8.77	-29.65	-8.04	0.6713	-4.21
4.5	0.1912	150.04	-3.65	0.6570	-32.72	-22.55	-51.38	0.6572	-72.14
5.0	0.2939	93.40	-2.66	0.7363	-64.48	-19.74	-85.59	0.6929	174.27

ALM-1412 Typical Scattering Parameters at 25°C, Vdd = 2.85 V, Vsd = +1.8V, Idd = 4.5mA (typ)

ALM-1412 Typical Noise Parameters at 25°C, Freq = 1.575 GHz, Vdd = 2.85 V, Vsd = +2.6V, Idd = 8mA (typ)

Freq	Fmin	GAI	MMA OPT	
(GHz)	(dB)	Mag	Ang	Rn/50
1.575	0.7	0.55	62	0.36

ALM-1412 Typical Noise Parameters at 25°C,

Freq = 1.575 GHz, Vdd = 2.85 V, Vsd = +1.8V, Idd = 4.5mA (typ)

Freq	Fmin	GAI	MMA OPT	
(GHz)	(dB)	Mag	Ang	Rn/50
1.575	0.85	0.54	71	0.36

Notes:

- The exceptional noise figure performance of the ALM-1412 is due to its highly optimized design. In this regard, the Fmin of the ALM-1412 shown above is locked down by the internal input pre-match. This allows the use of relatively inexpensive chip inductors for external matching.
- The NF performance of the ALM-1412 is also very resilient to operating conditions. For example, at Idd = 4.5 mA, the degradation in NF is only 0.1 dB, and not more than 0.15 dB degradation over temperature.

Part Number Ordering Information

Part Number	No. of Devices	Container
ALM-1412-BLKG	100	Antistatic bag
ALM-1412 -TR1G	3000	13" Reel

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. DIMENSIONS ARE INCLUSIVE OF PLATING.

3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR.

PCB Land Patterns and Stencil Design

Dimensions are in mm

PCB land pattern and suggested grounding vias

Combined PCB land pattern and stencil outline

Stencil outline drawing

Device Orientation

Tape Dimensions

K0 K0 SECTION X - X

DETAIL A

NOTES:

- 1. MEASURE FROM CENTER LINE OF SPROCKET HOLE TO CENTER LINE OF POCKET.
- 2. MEASURE FROM CENTER LINE OF POCKET HOLE TO CENTER LINE OF POCKET.
- 3. PITCH TOLERANCE FOR SPROCKET HOLE: 10 PITCH CUMULATIVE TOLERANCE IS ± 0.2 mm.
- 4. ALLOWABLE CAMBER TO BE 1 mm PER 250 mm IN LENGTH.

DIMENSIONS

NOTATION	MILLIMETERS
A0	3.60 ± 0.10
B0	2.40 ± 0.10
КО	1.35 ± 0.10
DO	1.55 ± 0.05
D1	1.60 ± 0.10
PO	4.00 ± 0.10
P1	8.00 ± 0.10
P2	2.00 ± 0.10
P10	40.00 ± 0.20
E	1.75 ± 0.10
F	5.50 ± 0.10
w	12.00 ± 0.30
т	0.30 ± 0.05

Reel Dimensions - 13 inch

For product information and a complete list of distributors, please go to our website: **www.ava**

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. AV02-0205EN - June 17, 2008

