

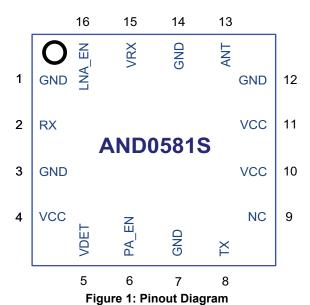
FEATURES

- Supports 802.11ac high-data rate standard
- Fully integrated FEIC including 5GHz Power Amplifier, Low Noise Amplifier with Bypass mode and SP2T TX/RX Switch
- 1.8% Dynamic EVM @ Pout = 16 dBm with 802.11ac MCS9-HT80 waveform
- 29 dB of Linear Power Gain
- Power Detector with High Accuracy over 3:1 VSWR
- 2.8 dB RX Path Noise Figure with 12 dB Gain LNA Mode
- Single 3.0 to 4.8 V Supply Voltage
- 50 Ω-Internally Matched RF Ports
- Leadfree and RoHS Compliant
- 3.0 x 3.0 x 0.6 mm QFN Package

APPLICATIONS

- 802.11a/n/ac for WLAN enabled:
 - Access points
 - Media gateways
 - Set-top boxes

PRODUCT DESCRIPTION


The ANADIGICS AND0581S is a high performance InGaP HBT FEIC that incorporates a 5GHz Power Amplifier, Low Noise Amplifier, RF Switch, and Power Detector. The FEIC is designed for WLAN transmit and receive applications in the 4.9 – 5.875 GHz band. Matched to 50 Ohms and DC blocked at all RF inputs and outputs, the part requires no additional RF matching components off-chip.

The antenna port is switched between WLAN transmit and WLAN receive with low loss switches. The integrated power detector circuit facilitates accurate power control under varying load conditions.

All circuits are biased by a single +3.3 V supply and consume ultra low current in the OFF mode. The PA exhibits unparalleled linearity and efficiency for 802.11a/n/ac WLAN systems under the toughest signal conditions within these standards.

AND0581S

802.11a/n/ac Power Amplifier, LNA and Tx/Rx Switch ADVANCED PRODUCT INFORMATION - Rev 0.1

The AND0581S is manufactured using advanced InGaP HBT technology that offers state-of-the-art performance, reliability, temperature stability and ruggedness.

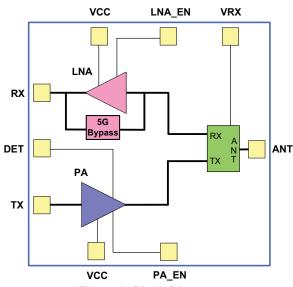


Figure 2: Block Diagram

Table 1: Pin Description Table

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	GND	Ground	9	NC	No Connection
2	RX	5 GHz receive output port	10	VCC	Power Supply
3	GND	Ground	11	VCC	Power Supply
4	VCC	Power Supply	12	GND	Ground
5	VDET	Power detector output. DC coupled	13	ANT	Antenna port
6	PA_EN	Power Amplifier Enable. On/ Off control for the Tx path power amplifier	14	GND	Ground
7	GND	Ground	15	VRX	Switch control receive path
8	TX	5 GHz RF transmit input port	16	LNA_EN	LNA Enable. On/Off control for the Rx path low noise amplifier

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT	COMMENTS
DC Power Supply	-	+6.0	V	
RF Input Level, 5 GHz PA	-	+5	dBm	Modulated
Operating Ambient Temperature	-40	+85	°C	
Storage Temperature	-55	+125	°C	
Storage Humidity	-	60	%	
Junction Temperature	-	150	°C	
	1000	-	V	Human body model (HBM)
ESD Tolerance	1000	-	V	Charged device model (CDM)
	100	-	V	Machine model (MM)
MSL Rating	MSL-1	-	-	

Functional operation to the specified performance is not implied under these conditions. Operation of any single parameter in excess of the absolute ratings may cause permanent damage. No damage occurs if one parameter is set at the limit while all other parameters are set within normal operating ranges.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
Operating Frequency Ranges	4900	-	5875	MHz	802.11a/n/ac	
DC Power Supply Voltage (Vcc)	+3.0	+3.3	+4.8	V	With RF applied	
Control Pin Voltage (PA_EN, LNA_EN, VRX)	+2.8 0	+3.2 0	+4.8 +0.4	V	Logic High/On Logic Low/Off	
Operating Temperature	-40	-	+85	°C		

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications - 5GHz TX Mode (TC = +25°C, VCC = +3.3V, PA_EN = +3.2V, VRX = 0.0V, LNA_EN = 0.0V) 54 Mbps, unless otherwise stated

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency	5170		5835	MHz	
Power Gain		29		dB	
Gain at 3.8 GHz		5		dB	
Gain Flatness		+/-0.25		dB	Over any 80 MHz BW
		16		dBm	-35 dB DEVM, MCS9 - HT80
Output Power (Pout)		18		dBm	-30 dB DEVM, MCS7 - HT40
		20		dBm	MCS0 - HT20 802.11n mask compliance
Supply Current (Icc)		150		mA	Роит = +16 dBm, MCS9 - HT80
Supply Current (ICC)		215		mA	Pout = +20 dBm, MCS0 - HT20
PA Noise Figure		5		dB	
Input Return Loss		10		dB	
Output Return Loss		15		dB	
Output Spurious Levels - Harmonics 2 fo 3 fo 4 fo		-30 -40 -60		dBm/ MHz	For Power levels up to 20 dBm OFDM 6 Mbps
Settling Time		0.5		uS	Within 0.5 dB of final value
Quiescent Current (Icq)		85		mA	

Table 5: Electrical Specifications - 5GHz TX Mode Power Detector (TC = +25°C, VCC = +3.3V, PA_EN = +3.2V, VRX = 0.0V, LNA_EN = 0.0V)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
		480		mV	Роит = +18 dBm, 54 Mbps, 5170 MHz
Detector Voltage		520		mV	Роит = +18 dBm, 54 Mbps, 5500 MHz
		560		mV	Роит = +18 dBm, 54 Mbps, 5825 MHz
Total Internal Load Impedance		3		kΩ	
Load Accuracy		+/-0.5		dB	Output Power variation at 3:1 VSWR all phases
Detector Directivity		19		dB	Output Power variation at 3:1 VSWR all phases

Table 6: Electrical Specification - 5GHz RX LNA Mode (TC = +25°C, VCC = +3.3V, LNA EN = +3.2V, VRX = +3.2V, PA EN = 0.0V)

(10 - 120 0, 100 - 10.01, ENA_EN - 10.21, TAK - 10.21, TA_EN - 0.01)						
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
Operating Frequency	4900		5875	MHz		
Gain - LNA Mode		12		dB		
Gain Flatness		+/-0.25		dB	Across any 40 MHz band	
Rx Noise Figure		2.8		dB		
Input Return Loss		6		dB		
Output Return Loss		12		dB		
IIP3		0		dBm		
Settling Time		0.5		uS	Within 0.5 dB of final value	
Rx Current		9		mA		

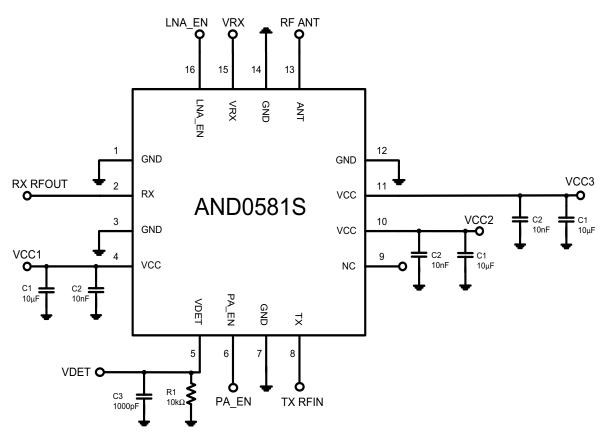
Table 7: Electrical Specification - 5GHz RX Bypass Mode (TC = +25°C, VCC = +3.3V, VRX = +3.2V, LNA_EN = 0.0V, PA_EN = 0.0V)

(10 - 120 0, 400 - 10.54, 41X - 10.24, ENA_EN - 0.04, 1 A_EN - 0.04)							
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS		
Operating Frequency	4900		5875	MHz			
Gain - RX Bypass Mode		-5.5		dB			
Gain Flatness		+/-0.25		dB	Across any 40 MHz band		
Rx Noise Figure		5.5		dB			
Input Return Loss		12		dB			
Output Return Loss		8		dB			
IIP3		+23		dBm			
Settling Time		0.5		uS	Within 0.5 dB of final value		

Table 8: Electrical Specifications - Switch and Control Pin (TC = +25°C, VCC = +3.3V, Vcontrol High = +3.2V, Vcontrol Low = 0.0V)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Control Pin Steady State Input Current (PA_EN)		10 0.5		uA uA	Logic Hi/On Logic Low/OFF
Control Pin Steady State Input Current (VRX)		10 0.5		uA uA	Logic Hi/On Logic Low/OFF
Control Pin Steady State Input Current (LNA_EN)		580 0.5		uA uA	Logic Hi/On Logic Low/OFF
Idle Current		6		uA	Total from all bias Pins, Controls in OFF mode Vcc = 3.6V
TX-RX Isolation		25		dB	

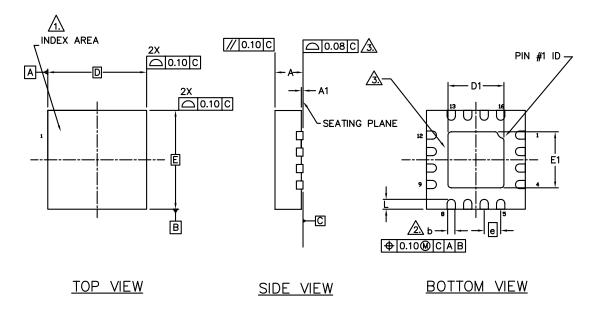
Table 9: Switch Modes of Operation


Table of Children models of Character						
Mode of Operation	PA_EN	LNA_EN	VRX			
TX Mode	HIGH	LOW	LOW			
RX LNA Mode	LOW	HIGH	HIGH			
RX Bypass Mode	LOW	LOW	HIGH			
Power on Reset	LOW	LOW	LOW			

Vcc = +3.0 V to +4.8 V; Logic State LOW = 0 V to +0.4 V; Logic State HIGH = +2.8 V to +4.8 V

APPLICATION SCHEMATIC

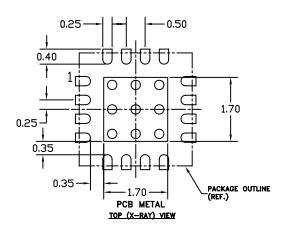
Although not shown in the schematic, a large value capacitor (~ 10 uF) should be connected to the voltage supply lines for low frequency decoupling.



Notes:

- (1) PA_EN: internal pull-down resistor. LNA_EN: internal pull-down resistor. VRX: No internal pull-up/down resistor.
- (2) External pull-up/down resistors are not required on any control lines to maintain or limit idle current.
- (3) A "low" voltage state (0.0V to +0.4V) should be applied on the Vrx control line to avoid possible EVM degradation in transmit mode. If this low logic level cannot be maintained in transmit mode and it "floats", we recommend using a pull down resistor external to our part on the Vrx pin.

Figure 3: Evaluation Board Schematic



S Y	DIMENSIONS-MM							
M	DIMENSIONS-MM							
ို	MIN.	NOM.	MAX.	^о т _Е				
Α	0.50	0.55	0.60					
A1	0.00	0.02	0.05					
Ь	0.18	0.25	0.30					
D		3.00 BSC						
D1	1.55	1.70	1.80					
Ε		3.00 BSC						
E1	1.55	1.70	1.80					
е		0.50 BSC						
	0.20	0.30	0.40					

NOTES:

- 11 TERMINAL #1 IDENTIFIER AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012.
- \(\frac{1}{2}\) DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

Figure 4: Package Outline Drawing

NOTES:

- (1) OUTLINE DRAWING REFERENCE: 98001-TBD
- (2) UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN.
- (3) DIMENSIONS IN MILLIMETERS.
- (4) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY. NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.
- (5) RECOMMENDED STENCIL THICKNESS: APPROX. 0.125mm (5 Mils)

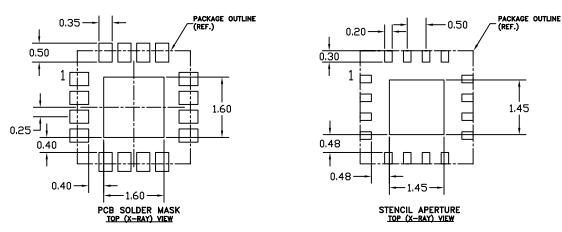


Figure 5: Recommended PCB Layout

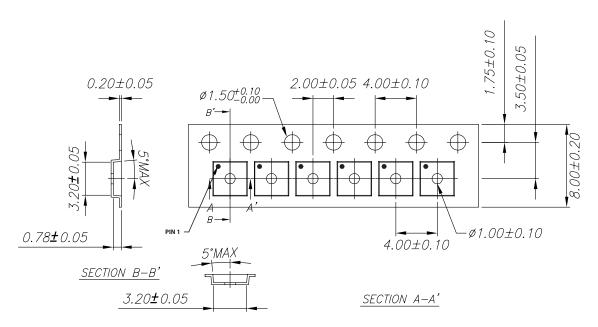
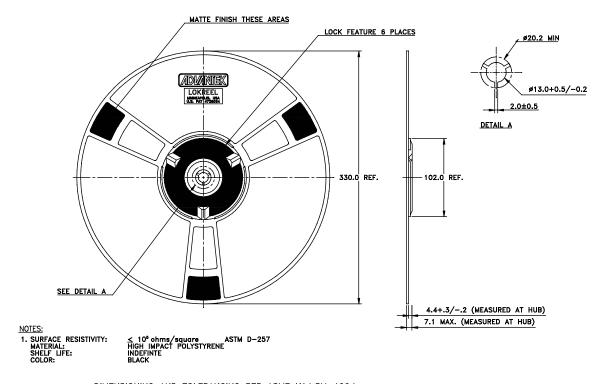



Figure 6: Carrier Tape

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 7: Reel

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AND0581SP7	-40 °C to +85 °C	16 pin, 3.0 x 3.0 x 0.6 mm Surface Mount Module	Bags
AND0581SP9	-40 °C to +85 °C	16 pin, 3.0 x 3.0 x 0.6 mm Surface Mount Module	Partial Reel
AND0581SV3	-40 °C to +85 °C	16 pin, 3.0 x 3.0 x 0.6 mm Surface Mount Module	5000 piece T/R
EVB0581S	-40 °C to +85 °C	Evaluation Board	Evaluation Board

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

