

HRF-SW1000 SPDT Absorptive RF Switch DC To 4GHz Operation

The Honeywell HRF-SW1000 is a high performance single pole double throw (SPDT) absorptive RF switch ideal for use in wireless base station and handset applications that require minimum power and minimum insertion loss.

The HRF-SW1000 is manufactured with Honeywell's patented Silicon On Insulator (SOI) CMOS technology, which provides the performance of GaAs with the economy and integration capabilities of conventional CMOS technology. These switches are DC coupled to improve lower operating frequency, frequency response and reduce the number of DC bias points required.

HRF-SW1000 in VQFN Package

FEATURES

- Typical High Isolation Of > 42 dB @ 2 GHz
- Typical Low Insertion Loss Of 1.2dB @ 2 GHz
- Integrated CMOS Control Logic
- DC-coupled, bi-directional RF Path
- Single Positive Supply Voltage
- Ultra Small VQFN Packaging
- Impedance matched for 50 Ohm systems
- Lead-free, RoHS compliant and halogen-free

RF ELECTRICAL SPECIFICATIONS @ + 25°C

Results @ $V_{DD} = 5.0 + /- 10\%$, $V_{SS} = 0$ unless otherwise stated, $Z_0 = 50$ Ohms Contact Honeywell for relative performance at other supply configurations

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Units
Insertion Loss		0.5 GHz 2.0 GHz 3.0 GHz		0.9 1.2 1.7	1.4 1.6 2.2	dB dB dB
Isolation		0.5 GHz 2.0 GHz 3.0 GHz	52 42 36	55 45 41		dB dB dB
Return Loss			-15	-20		dB
Input P1dB	$V_{SS} = Gnd$ $V_{SS} = -5V$	1.0 GHz 1.0 GHz		17 27		dBm dBm
Input IP3	Two-Tone Inputs, up to + 5 dBm $V_{SS} = Gnd$ $V_{SS} = -5V$	2.0 GHz 2.0 GHz		35 37		dBm dBm
Trise, Tfall Ton, Toff	10% To 90% 50% Cntl To 90% / 10%RF			10 20		ns ns

DC ELECTRICAL SPECIFICATIONS @ + 25°C

Parameter	Minimum	Typical	Maximum	Units
V_{DD}	3.3 ¹	5.0	5.5	V
V_{SS}	-5.0			V
I _{DD}		<5	35	uA
CMOS Logic Level (0)	0		0.8	V
CMOS Logic Level (1)	$V_{DD} - 0.8$		V_{DD}	V
Input Leakage Current			10	uA

Note 1, the performance curves are for $V_{DD} = +5.0 + /-10\%$

ABSOLUTE MAXIMUM RATINGS1

Parameter	Absolute Maximum	Units
V_{DD}	+6.0	V
V _{SS}	-5.5	V
Vin Digital Logic 0	-0.6	V
Vin Digital Logic 1	Vdd + 0.6	V
Input Power	> 35	dBm
ESD Voltage ²	400	V
Moisture Sensitivity Level	Level 3 @ 260°C	
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +125	°C

Note 1 - Operation of this device beyond any of these parameters may cause permanent damage.

Note 2 - Although the HRF-SW1000 contains ESD protection circuitry on all digital inputs, precautions should be taken to ensure that the Absolute Maximum Ratings are not exceeded.

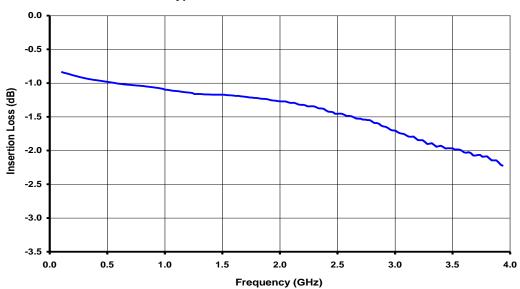
Latch-Up: Unlike conventional CMOS digital switches, Honeywell's HRF-SW1000 is immune to latch-up.

TRUTH TABLE

Switch Control	RF Output 1	RF Output 2
0	RF INPUT	
1		RF INPUT

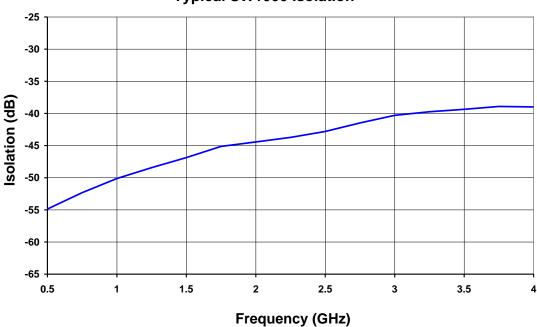
"0" = CMOS Low, "1" = CMOS High

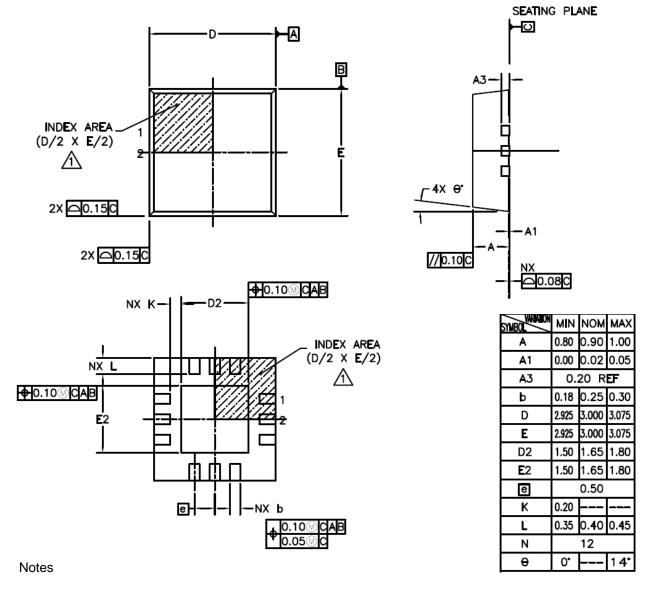
PIN CONFIGURATIONS


Pin	Function	Pin	Function
1	GROUND	7	GROUND
2	RF OUT 2	8	RF OUT 1
3	GROUND	9	GROUND
4	VDD	10	GROUND
5	SWITCH CONTROL	11	RF IN
6	VSS	12	GROUND

Note: Bottom ground plate must be grounded for proper RF performance.

PERFORMANCE CURVES


Insertion Loss



Isolation

Typical SW1000 Isolation

PACKAGE OUTLINE DRAWING

- 1. Pin 1 identifier can be a combination or a dot and/or chamfer. A chamfer is on the bottom ground plane.
- Dimensions are in millimeters.

HALOGEN-FREE MATERIAL SET

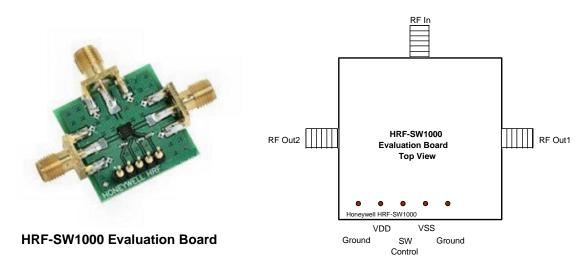
The –FL switches have a Halogen-free material set that can withstand a maximum soldering temperature of 260°C.

LEAD FINISH

The package leads are Nickel Palladium with a Gold and Silver flash (NiPdAu+Ag). The configuration being manufactured and delivered today is lead-free and RoHS compliant. Plating thicknesses are listed below in microns (um).

Ni = 0.254 um min | Pd = 0.00254 um min | Au+Ag = 0.00508 um min | Au Composition = 30% min to 70% max

LEAD FREE QFN SURFACE MOUNT APPLICATION


Please see Application Note AN310a for assembly process recommendations. The maximum soldering temperature of the - FL is 260°C. Application Notes can be found at our website: www.honeywell.com/microwave

CIRCUIT APPLICATION INFORMATION

These switches require a DC reference to ground. They may not operate properly when AC coupled on both the RF input and output without a DC ground reference provided as part of the circuit. See Application Note AN311.

EVALUATION CIRCUIT BOARD

Honeywell's evaluation board provides an easy to use method of evaluating the RF performance of our switch. Simply connect power; DC and RF signals to be measuring switch performance in less than 10 minutes.

EVALUATION CIRCUIT BOARD LAYOUT DESIGN DETAILS

Item	Description
PCB	Impedance Matched Multi-Layer FR4
Switch	HRF-SW1000 RF Switch
Chip Capacitor	Panasonic Model ECU-E1C103KBQ Capacitor, .01uf 0402 10% 16V
RF Connector	Johnson Connectors Model 142-0701-801 SMA RF Coaxial Connector
DC Pin	Mil-Max Model 800-10-064-10-001 Header Pins

ORDERING INFORMATION

Ordering Number	Delivery Method	Units Per Shipment
HRF-SW1000-FL-TR	Tape & Reel	2500 Units per Reel
HRF-SW1000-E	Evaluation Board	One Board Per Box

The new –FL switches replace and are electrically equivalent with the –GR switches. The –GR switches are obsolete.

FIND OUT MORE

For more information on Honeywell's Microwave Products visit us online at **www.honeywellmicrowave.com** or contact us at 800-323-8295 (763-954-2474 internationally).

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

