

Fast Switching Thyristor

Replaces January 2000 version, DS4280-4.0

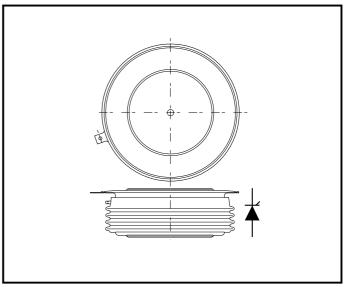
DS4280-4.1 July 2002

APPLICATIONS

- High Power Inverters And Choppers
- **■** UPS
- Railway Traction
- Induction Heating
- AC Motor Drives
- Cycloconverters

FEATURES

- Double Side Cooling
- High Surge Capability
- High Voltage


VOLTAGE RATINGS

Type Number	Repetitive Peak Voltages V _{DRM} V _{RRM}	Conditions
TF921 25H	2500	$V_{RSM} = V_{RRM} + 100V$
TF921 24H	2400	
TF921 22H	2200	$I_{DRM} = I_{RRM} = 100 \text{mA}$
		at $V_{_{RRM}}$ or $V_{_{DRM}}$ & $T_{_{vj}}$

Lower voltage grades available.

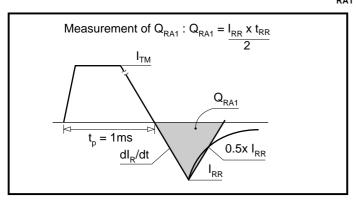
KEY PARAMETERS

\mathbf{V}_{DRM}	2500V
I _{T(RMS)}	1570A
I _{TSM}	13600A
dV/dt	500V/ μ s
dl/dt	500A/ μ s
t _a	120 μ s

Outline type code: MU169.
See Package Details for further information.

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half sinewave, 50Hz, T _{case} = 80°C	1000	Α
I _{T(RMS)}	RMS value	Half sinewave, 50Hz, T _{case} = 80°C	1570	Α


SURGE RATINGS

Symbol	Parameter	Parameter Conditions		Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; $V_R = 0\% V_{RRM}$, $T_j = 125$ °C	13.6	kA
l²t	I ² t for fusing	10ms half sine; $V_R = 0\% V_{RRM}$, $T_j = 125$ °C	930 x 10 ³	A²s

THERMAL AND MECHANICAL DATA

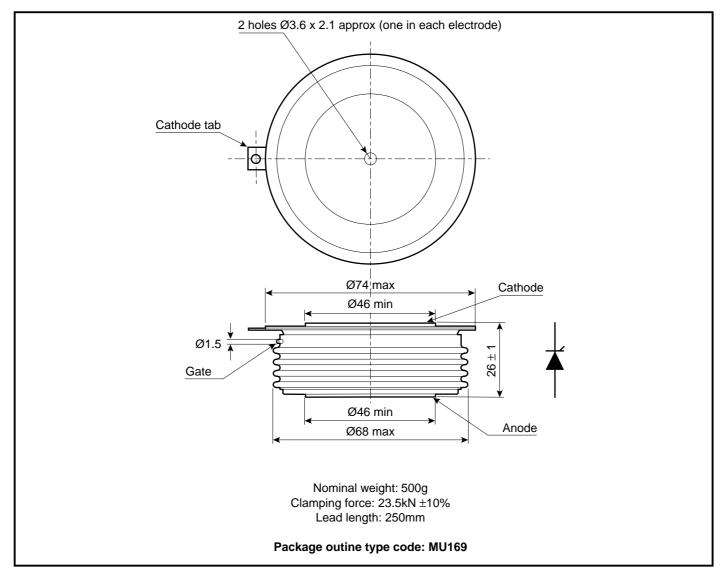
Symbol	Parameter	Conditions		Min.	Max.	Units
$R_{th(j-c)}$	Thermal resistance - junction to case	Double side cooled	dc	-	0.02	°C/W
		Single side cooled	Anode dc	-	-	°C/W
			Cathode dc	-	-	°C/W
$R_{th(c-h)}$	Thermal resistance - case to heatsink	Clamping force 23.5kN with mounting compound	Double side	-	0.006	°C/W
			Single side	-	0.012	°C/W
$T_{v_{j}}$	Virtual junction temperature	On-state (conducting)	1	-	135	°C
		Reverse (blocking)		-	125	°C
T _{stg}	Storage temperature range			-40	150	°C
-	Clamping force			22.3	24.6	kN

MEASUREMENT OF RECOVERED CHARGE - \mathbf{Q}_{RA1}

DYNAMIC CHARACTERISTICS

Symbol	Parameter	Conditions		Min.	Max.	Units
V _{TM}	Maximum on-state voltage	At 1500A peak, T _{case} = 25°C		-	1.85	V
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V_{RRM}/V_{DRM} , $T_{case} = 125^{\circ}C$		-	100	mA
dV/dt	Maximum linear rate of rise of off-state voltage	Linear to 60% V_{DRM} $T_j = 125$ °C,	Gate open circuit	-	500	V/µs
dl/dt		Gate source 20V, 20Ω	Repetitive 50Hz	-	500	A/μs
ai/at	Rate of rise of on-state current	t _r ≤ 0.5μs, T _j = 125°C	Non-repetitive	-	800	A/μs
V _{T(TO)}	Threshold voltage	At T _{vj} = 125°C		-	1.1	V
r _T	On-state slope resistance	At T _{vj} = 125°C		-	0.375	mΩ
t _{gd}	Delay time	$T_{j} = 25^{\circ}C$, $I_{T} = 50A$, $V_{D} = 300V$, $I_{G} = 1A$, $dI/dt = 50A/\mu s$, $dI_{G}/dt = 1A/\mu s$		1.5*	-	μs
t _{(ON)TOT}	Total turn-on time			3*	-	μs
I _H	Holding current	$T_{j} = 25^{\circ}C, I_{TM} = 1A, V_{D} = 12V$		100*	-	mA
I _L	Latching current	$T_j = 25^{\circ}\text{C}, I_G = 0.5\text{A}, V_D = 12\text{V}$		300*	-	mA
t _q	Turn-off time	$T_j = 125^{\circ}C$, $I_T = 1380A$, $V_R = 10$ dV/dt = 20V/ μ s to 0.6V _{DRM} ,	0V, t _q code: H	-	120	μs
$Q_{_{\!RR}}$	Reverse recovery charge	$dI_R/dt = 50A/\mu s, t_p = 1 ms.$		-	2200	μС

^{*}Typical value.


GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Conditions	Тур.	Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	3.0	V
I _{GT}	Gate trigger current	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	250	mA
V _{GD}	Gate non-trigger voltage	At $V_{DRM} T_{case} = 125^{\circ}C$, $R_{L} = 1k\Omega$	-	0.25	V
V _{FGM}	Peak forward gate voltage	Anode positive with respect to cathode	-	30	V
V _{FGN}	Peak forward gate voltage	Anode negative with respect to cathode	-	0.25	V
V _{RGM}	Peak reverse gate voltage		-	5.0	V
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	-	10	Α
P _{GM}	Peak gate power		-	50	W
P _{G(AV)}	Mean gate power		-	3.0	W

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS DYNEX SEMICONDUCTOR LTD

Doddington Road, Lincoln. Lincolnshire. LN6 3LF. United Kingdom.

Tel: +44-(0)1522-500500 Fax: +44-(0)1522-500550 CUSTOMER SERVICE

Tel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020

SALES OFFICES

Benelux, Italy & Switzerland: Tel: +33 (0)1 64 66 42 17. Fax: +33 (0)1 64 66 42 19.

France: Tel: +33 (0)2 47 55 75 52. Fax: +33 (0)2 47 55 75 59.

Germany, Northern Europe, Spain & Rest Of World: Tel: +44 (0)1522 502753 / 502901.

Fax: +44 (0)1522 500020

North America: Tel: (440) 259-2060. Fax: (440) 259-2059. Tel: (949) 733-3005. Fax: (949) 733-2986.

These offices are supported by Representatives and Distributors in many countries world-wide. © Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOM

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change

Advance Information: The product design is complete and final characterisation for volume production is well in hand

No Annotation: The product parameters are fixed and the product is available to datasheet specification.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners