Freescale Semiconductor Technical Data

Advanced Doherty Alignment Module (ADAM)

The MMDS25254H is an integrated module designed to enable accurate alignment of phase and amplitude on the carrier and peaking amplifiers when used in base station transmitters in conjunction with high power Doherty amplifiers and ensures Doherty power amplifier consistency, in particular for asymmetric implementations. The MMDS25254H enables superior linearity-efficiency trade-off while improving output power. It contains a 90° coupler, digitally selectable phase shifters and step attenuators, and operates from a single voltage supply. The MMDS25254H is suitable for transmit protocols such as W-CDMA, UMTS and LTE using frequencies from 2300 to 2700 MHz, and is controlled using a serial peripheral interface (SPI).

Features

- Frequency: 2300-2700 MHz
- Maximum RF Input Power: 25 dBm (CW)
- · Low Loss Power Splitter
- 0.5 dB Step Programmable Attenuators with 7.5 dB Maximum Range
- 7° per Bit Phase Shifters with 49° Maximum Range
- Power up into a Selectable State
- Single 5 Volt Supply
- Supply Current: 12 mA
- 50 Ohm Operation (no external matching required)
- TTL/CMOS/SPI Interface (1.8 V, 3.3 V Logic)
- Cost-effective 32-pin, 6 mm QFN Surface Mount Plastic Package
- In Tape and Reel. T1 Suffix = 1,000 Units, 16 mm Tape Width, 7-inch Reel.

Document Number: MMDS25254H Rev. 0, 5/2014

VRoHS

 $\ensuremath{\textcircled{\sc c}}$ Freescale Semiconductor, Inc., 2014. All rights reserved.

Table 1. Maximum Ratings

Symbol	Value	Unit
V_{DD}	6	V
V _{in}	-0.5 to +3.63	V
P _{in}	25	dBm
T _{stg}	-65 to +150	°C
Т _Ј	150	°C
	Symbol V _{DD} V _{in} P _{in} T _{stg} T _J	Symbol Value V _{DD} 6 V _{in} -0.5 to +3.63 P _{in} 25 T _{stg} -65 to +150 T _J 150

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Min	Max	Unit	
Supply Voltage	V _{DD}	4.5	5.5	V	
DC Input Voltage (SCLK, LCLK, LEN, SDI)	V _{in}	0	3.3	V	

Table 3. Electrical Characteristics (V_{DD} = 5 Vdc, 2650 MHz, T_A = 25°C, 50 ohm system, in Freescale Application Circuit)

Characteristic	Symbol	Min	Тур	Max	Unit
Insertion Loss (Includes 3 dB power division and 2.5 dB loss)	١L	—	5.5		dB
Max Transition Time (rising edge of LCLK to RF _{out})	t _{transition}	—	350	—	ns
Power Input @ 1dB Compression	P1dB	—	35	—	dBm
Supply Current	I _{DD}	10	11	12	mA
Isolation (S32)	S32	—	25	—	dB
Input Return Loss (S11)	IRL	—	15	—	dB
Output Return Loss (S22, S33)	ORL	—	15	—	dB
Third Order Output Intercept Point	OIP3	—	45	—	dBm
Phase Step	∆ΦҐ	—	7	—	°/bit
Phase Control Range	$\Delta \Phi$	—	49	—	0
Attenuation Step	∆R Ґ	—	0.5	—	dB
Attenuation Control Range	ΔR	—	7.5	—	dB
Max Input Voltage Logic Low	V _{IL}	—	—	0.4	V
Min Input Voltage Logic High	V _{IH}	1.6	—	—	V
SDO Output Voltage High	V _{OH}	1.8(1)	—	$0.6 \times V_{DD}$	V
SDO Output Voltage Low	V _{OL}	0	_	0.4	V
Clock Frequency (50% Duty Cycle)	f _{SCLK}	_	_	26	MHz

1. Load = 20 pF @ maximum clock frequency.

Table 4. Thermal Characteristics

Characteristics	Symbol	Value ⁽²⁾	Unit
Thermal Resistance, Junction to Case Case Temperature 107°C, P _{out} = 0.02 W, Maximum Phase and Attenuation State, P _{in} = 25 dBm CW, 2650 MHz, V _{DD} = 5 Vdc, I _{DD} = 11 mA	R _{θJC}	16	°C/W

Table 5. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	Ш

Table 6. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

Table 7. Package Pin Description

Pin Number	Pin Function	Pin Description				
1, 8(1)	SCLK	Serial Data Clock				
2(2), 7(1)	SDO	Serial Data Output				
3, 6, 12, 13, 14, 15, 16, 25, 26, 27, 28, 29	N.C.	No Connection				
4, 5 (3)	RF _{in}	RF Input				
9, 32(1)	SDI	Serial Data Input				
10, 31 (1)	LCLK	Latch Clock				
11, 30(1)	V _{DD}	Supply Voltage (attenuators, phase shifters, SPI)				
17, 18 ⁽³⁾	RF _{out1}	RF Output 1 (peaking amplifier path)				
19	GND	Ground				
20 (4)	LEN	Logic Enable (active low)				
21(5)	PUP	 Power-up Programming: Minimum attenuation/minimum phase (0 dB/0°) Maximum attenuation/maximum phase (7.5 dB/–49°) 				
22 (6)	BYP	InternalCore Bypass Voltage (external 100 nF bypass capacitor)				
23, 24 (3)	RF _{out2} RF Output 2 (carrier amplifier path)					

1. Redundant pins are internally connected. User can connect to either of the internally connected paired pins: 1 and 8, 2 and 7, 9 and 32, 10 and 31, and 11 and 30.

2. The ADAM SPI interface can be connected to a common SPI bus, provided the SDO pin is not connected, and treated as a write-only device.

3. Each RF pin pair should be tied together.

4. Logic low enables normal SPI operation. Logic high disables SPI and places device at 0 dB attenuation and 0° phase shift.

 Logic low places device at 0 dB attenuation and 0° phase shift at power up. Logic high places device at 7.5 dB attenuation and -49° phase shift. Because PUP pin has internal pull up, logic high can be set by no connection to pin. Alternatively, it can be connected to BYP or a usercontrolled V_{in}.

6. Requires external capacitive decoupling to ground.

Symbol	Parameter	Min	Тур	Max	Units
t _{SCLK}	Serial Clock Period	38.5	—	—	ns
t _{SCLKH}	Serial Clock Pulse Width High	10	—	_	ns
t _{SCLKL}	Serial Clock Pulse Width Low	10	_	_	ns
t _{SU}	Serial Data Input Setup Time to SCLK Rising Edge	—	—	5	ns
t _H	Serial Data Input Hold Time from SCLK Rising Edge	—	—	2	ns
t _{OH}	Serial Data Output Hold Time from SCLK Rising Edge	1.6	—	—	ns
t _{OV} (10 pF)	Serial Data Output Propagation Delay from SCLK Rising Edge	—	5	9	ns
t _{OV} (50 pF)	Serial Data Output Propagation Delay from SCLK Rising Edge	—	15	26	ns
t _{OV} (150 pF)	Serial Data Output Propagation Delay from SCLK Rising Edge	—	35	65	ns
t _{SETTLE}	Serial Clock Rising Edge Setup Time to Latch Clock Rising Edge	—	—	27	ns
t _{LCLKH}	Latch Clock Pulse Width High	10	_	_	ns

Figure 3. Serial Interface Timing Diagram

Note: Bits a3/b3 are reserved (RSVD) for future use. Always write these bits as zero (0).

Figure 4. Serial Interface Bits Diagram

a7	a6	a5	a4	Attenuation (dB)		a2	a1	a0	Phase Shift (°)	b7	b6	b5	b4	Attenuatio (dB)
L	L	L	L	0		L	L	L	0	L	L	L	L	0
L	L	L	н	0.5	1	L	L	н	-7	L	L	L	Н	0.5
L	L	Н	L	1.0		L	Н	L	-14	L	L	Н	L	1.0
L	L	Н	н	1.5		L	н	н	-21	L	L	н	Н	1.5
L	н	L	L	2.0		Н	L	L	-28	L	Н	L	L	2.0
L	н	L	Н	2.5		Н	L	Н	-35	L	Н	L	Н	2.5
L	н	н	L	3.0		н	Н	L	-42	L	Н	Н	L	3.0
L	н	н	н	3.5		Н	Н	н	-49	L	Н	н	Н	3.5
Н	L	L	L	4.0						Н	L	L	L	4.0
Н	L	L	н	4.5						Н	L	L	Н	4.5
Н	L	Н	L	5.0						Н	L	Н	L	5.0
Н	L	Н	Н	5.5						Н	L	Н	Н	5.5
Н	н	L	L	6.0						н	Н	L	L	6.0
Н	Н	L	Н	6.5	1					Н	Н	L	Н	6.5
Н	Н	Н	L	7.0						Н	Н	Н	L	7.0
н	Н	Н	Н	7.5						Н	Н	Н	Н	7.5

able	10.	Logic	Truth	Table —	RFin	to	RF auto
upic	10.	Logio	man	Tuble	i i in		out2

-	in in io in out2									
on	b2	b1	b0	Phase Shift (°)						
	L	L	L	0						
	L	L	Н	-7						
	L	н	L	-14						
	L	н	Н	-21						
	Н	L	L	-28						
	Н	L	Н	-35						
	Н	н	L	-42						
	Н	Н	Н	-49						

Note: ADAM contains a 16-bit shift register, with the last bit connected to the SDO signal. The SDO pin is intended for daisy-chaining multiple ADAM devices rather than being used as an SPI bus connection; the SDO output is always actively driven, so it should not be directly connected to the SPI bus.

Table 11. Power-up Programming (PUP) State

LCLK	PUP	Function
Х	0	Minimum Attenuation/Minimum Phase (0 dB/0°)
Х	1	Maximum Attenuation/Maximum Phase (7.5 dB/-49°)
On 1st rising edge	Х	Normal Operation on 1st Rising Edge LCLK and Subsequent Rising Edges

Figure 5. Typical Doherty Base Station Alignment Block Diagram

Table [.]	12	MMDS25254H	Test	Circuit	Com	nonent	Desid	nations	and	Values
Table	· Z . ·		reat	Oncur	00111	poment	Deale	manons	and	values

Part	Description	Part Number	Manufacturer
C1	22 pF Chip Capacitor	GRM1885C1H220JA01J	Murata
C2	100 pF Chip Capacitor	GRM1885C1H101JA01J	Murata
C3, C4	0.4 pF Chip Capacitors	06035J0R4ABT	AVX
C5	0.1 μF Chip Capacitor	GRM155R61A104KA01D	Murata
РСВ	$0.02'', \epsilon_r = 3.48$	RO4350	Rogers

Figure 7. MMDS25254H Test Circuit Component Layout

Table 12	. MMDS25254H	Test Circuit	Component	Designations and	Values
----------	--------------	---------------------	-----------	-------------------------	--------

Part	Description	Part Number	Manufacturer
C1	22 pF Chip Capacitor	GRM1885C1H220JA01J	Murata
C2	100 pF Chip Capacitor	GRM1885C1H101JA01J	Murata
C3, C4	0.4 pF Chip Capacitors	06035J0R4ABT	AVX
C5	0.1 μF Chip Capacitor	GRM155R61A104KA01D	Murata
PCB	$0.02'', \epsilon_r = 3.48$	RO4350	Rogers

(Test Circuit Component Designations and Values repeated for reference.)

path attenuation.

f, FREQUENCY (MHz)

Note: The phase angle difference is a combination of insertion phase and selected phase adjustment.

Figure 10. Phase Angle Difference of S21 and S31 versus Phase State versus Frequency

Note: A total of 256 states are plotted in Figures 11 to 14. Graph measurements include 128 states for the carrier side (combinations of all phase and amplitude states), with the peaking side set to 0 dB attenuation and 0° phase. Measurements also include 128 states for the peaking side (combinations of all phase and amplitude states) with the carrier side set to 0 dB attenuation and 0° phase.

Figure 17. Phase Angle Difference of S21 and S31 versus Phase State versus Temperature

Figure 18. PCB Pad Layout for PQFN 6 × 6

Figure 19. Product Marking

RF Device Data

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN) 6 X 6 X 0.85, 32 I/O, 0.5 PITCH		QUAD	DOCUMEN	NT NO: 98ASA00395D	REV: O	
		AGE (QFN)	CASE NUMBER: 2235-01		03 NOV 2011	
		J.5 PITCH	STANDAF	RD: NON-JEDEC		

DETAIL G VIEW ROTATED 90° CW

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN)		QUAD	DOCUMEN	NT NO: 98ASA00395D	REV: O	
		AGE (QFN)	CASE NU	JMBER: 2235-01	03 NOV 2011	
	6 X 6 X 0.85, 32 1/0, l	J.5 PITCH	STANDAF	RD: NON-JEDEC		

NOTE:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING & TOLERANCING PER ASME Y14.5 2009.
- THIS DIMENSION APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
- A. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- $\sqrt{5}$. This dimension applies only for terminals.
- 6. MOLD FLASH OR PLATING COVERAGE ON THE RING PAD AREA SHALL BE ALLOWABLE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN)		DOCUMEN	NT NO: 98ASA00395D	REV: O		
		AGE (QFN)	CASE NUMBER: 2235-01 03 NOV 20		03 NOV 2011	
6 X 6 X 0.85, 32 1/0, 0.5 PITCH			STANDAF	RD: NON-JEDEC		

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

- Software
- .s3p File
- Large Signal Simulation

Development Tools

- Printed Circuit Boards
- Evaluation/Development Boards and Systems (file includes ADAM User's Guide)

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where Freescale is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local Freescale Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2014	Initial release of data sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

