

SC1887-03: Adaptive RF Power Amplifier Linearizer

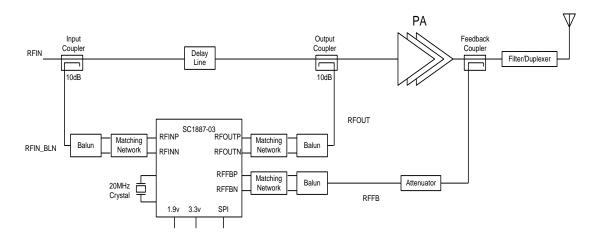
General Description

SC1887-03 is a fully-adaptive, RF-in / RF-out predistortion solution for precisely compensating RF power amplifier non-linearities including AM/AM and AM/PM distortion, spectral regrowth, and code domain errors. The SC1887-03 substantially increases power amplifier efficiency by reducing outof-band energy. SC1887-03 is a complete systemon-a-chip (SoC) solution. The product is used in the transmitter amplification chain to linearize the final power amplification stages. The SC1887-03 measures the feedback signal from the power amplifier output, and optimizes the correction function by minimizing distortion. SC1887-03 correction function is implemented and applied to the transmit signal using only RF-domain analog signal processing circuitry allowing the SC1887-03 to operate over a wide bandwidth at very low power consumption.

Features_

- RF-in/RF-out integrated SoC in standard CMOS
- Low Power Consumption: 1W
- UHF Frequency Range: 470-862MHz
- Input Signal Bandwidth: up to 10 MHz
- Fully Adaptive Compensation
- Greater than 8dB ACLR improvement*
- Packaged in 9x9 mm QFN package
- Operating Case Temperature: -40 to +80°C
- Fully RoHs compliant

* Greater improvement is possible under particular applications. Performance depends upon amplifier, bias & waveform.

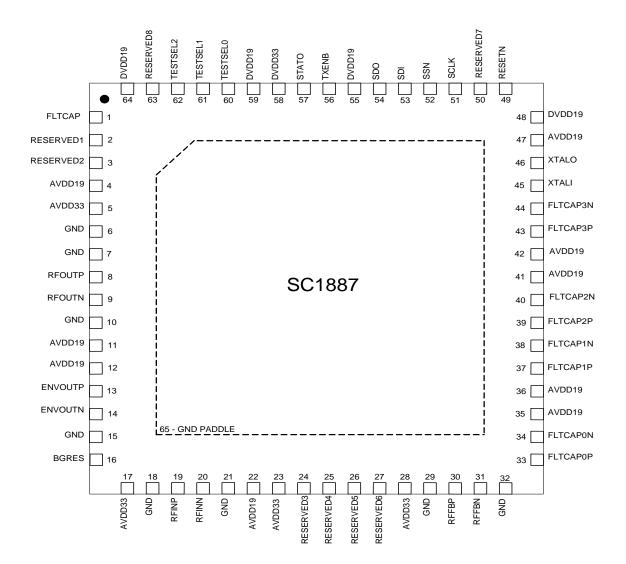

Applications

- DVB (T/H/T2), CMMB, DTMB, ISDB-T and ATSC
- Broadcast Infrastructure: Digital terrestrial UHF amplifiers, exciters, drivers and transmitters
- Class A/AB and Doherty amplifiers
- LDMOS and GaN amplifiers

Benefits

- Ease of use
 - o Integrated RFin/RFout solution
 - o Operates over entire UHF band
 - No software development required
 - No training, algorithm development, control required – automatically calibrates and adjusts to the signal and PA environment
 - \circ $\;$ Supports wide range of modulation schemes.
- Low power consumption enables linearization of power amplifiers down to 1W
- Smaller total system form factors
 - o Reduced heat sink size and weight
 - \circ Small implementation size (9 cm²)
- Reduces operating costs
 - Reduces energy consumption supporting Green initiatives
 - Reduces amplifier power consumption and thermal dissipation
 - Increases amplifier reliability
- Reduces BOM costs
 - Reduced power supply & heat sink costs
 - o Reduced back-off reduces transistor costs

Application Block Diagram



Introduction to Predistortion using the SC1887-03

Wideband signals in today's telecommunications systems have high peak-to-average ratios and stringent spectral regrowth specifications. These specifications place high linearity demands on power amplifiers. Linearity may be achieved by backing off output power at the price of reducing efficiency. However, this increases the component and operating costs of the power amplifier. Better linearity may be achieved through the use of digital pre-distortion and other linearization techniques, but many of these are time consuming and costly to implement.

With the SC1887-03, the complex signal processing is done in the RF domain. This results in a simple system-on-chip that offers wide signal bandwidth, broad frequency of operation, and very low power consumption. It is an elegant solution that reduces development costs and speeds time to market. Applicable across a broad range of digital broadcast standards — including DVB (T/H/T2), CMMB, DTMB, ATSC and ISDB-T — the powerful analog signal processing engine is capable of linearizing even the most efficient power amplifier topologies. The SC1887-03 is a true RFin and RFout solution, supporting modular power amplifier designs that are independent of the baseband and transceiver subsystems. The SC1887-03 delivers the required efficiency and performance demanded by today's broadcast systems.

Pinout Configuration (Top View)

Pin Description

PIN	NAME	TYPE	FUNCTION
1	FLTCAP	Analog In	Dedicated external filter capacitor. Connected to DVDD19 through 23.2 Ω 1% resistor
2	RESERVED1	Reserved	Do not connect. Reserved for internal use.
3	RESERVED2 AVDD19	Reserved Supply	Do not connect. Reserved for internal use. +1.9V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
5	AVDD33	Supply	+3.3V DC Supply Voltage segregated for a single analog circuit using pin #6 for GND. Required a 1000pF shunt capacitance near Pin connection
6	GND	Supply	Ground segregated for a single analog circuit using pin #5 for the supply
7	GND	RF Shield	Ground for shield of RF signal
8 9	RFOUTP RFOUTN	Analog Out	RF Output Signal, 50 Ω differential output, 25 Ω per end
10	GND	RF Shield	Ground for shield of RF signal
11	AVDD19	Supply	+1.9V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
12 13	AVDD19 ENVOUTP	Supply	+1.9V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
14	ENVOUTN	Analog Out	Do not connect. Reserved for internal use.
15 16	GND BGRES	Supply Analog In	Ground segregated for a bandgap reference using pin #17 for the supply Bandgap Resistor. 12.4KΩ , 1%, metal film, temp-coef <100ppm/°C to GND
			+3.3V DC Supply Voltage segregated for a bandgap reference using pin #15 for GND. Required a 1000pF shunt
17	AVDD33	Supply	capacitance near Pin connection
18 19	GND RFINP	RF Shield	Ground for shield of RF signal
20	RFINE	Analog In	RF Input Signal, 100 Ω differential input, 50 Ω per end
21	GND	RF Shield	Ground for shield of RF signal
22	AVDD19	Supply	+1.9V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
23 24	AVDD33 RESERVED3	Supply	+3.3V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
25	RESERVED4	Analog Out	Do not connect. Reserved for internal use.
26	RESERVED5	Analog Out	Do not connect. Reserved for internal use.
27 28	RESERVED6 AVDD33	Supply	+3.3V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
29	GND	RF Shield	Ground for shield of RF signal
30	RFFBP	Analog In	RF Feedback Signal, 100Ω differential input, 50Ω per end
31 32	RFFBN GND	RF Shield	Ground for shield of RF signal
33	FLTCAP0P		
34	FLTCAP0N	Analog Out	Dedicated external filter capacitor #0
35 36	AVDD19 AVDD19	Supply Supply	+1.9V DC Supply Voltage for analog circuits +1.9V DC Supply Voltage for analog circuits
30	FLTCAP1P		
38	FLTCAP1N	Analog Out	Dedicated external filter capacitor #1
39 40	FLTCAP2P FLTCAP2N	Analog Out	Dedicated external filter capacitor #2
40	AVDD19	Supply	+1.9V DC Supply Voltage for analog circuits
42	AVDD19	Supply	+1.9V DC Supply Voltage for analog circuits
43	FLTCAP3P	Analog Out	Dedicated external filter capacitor #3
44 45	FLTCAP3N XTALI	Analog In	
46	XTALO	Analog Out	20 MHz clock reference from crystal or resonator.
47	AVDD19	Supply	+1.9V DC Supply Voltage for analog circuits. Required a 1000pF shunt capacitance near Pin connection
48 49	DVDD19 RESETN	Supply Digital In	+1.9V DC Supply Voltage for digital circuits Reset when "Low". Power-up sequence on á "High". Has internal pull-up. 3.3V logic
50	RESERVED7	Reserved	Do not connect. Reserved for internal use. Has internal pull-up.
51	SCLK	Digital In	SPI clock (recommend 4 MHz; permitted 50 KHz to 4 MHz). Has internal pull-down. 3.3V logic
52 53	SSN SDI	Digital In Digital In	SPI slave select enabled "Low". Has internal pull-up. 3.3V logic SPI slave data input to RFPAL. Has internal pull-down. 3.3V logic
53	SDO	Digital III Digital Out	SPI slave data input to REPAL. Has internal pull-down. 5.5V logic
55	DVDD19	Supply	+1.9V DC Supply Voltage for digital circuits
56	TXENB	Digital In	Transmit Enable input has internal pull-up and can "no connect". 3.3V logic. It can be optionally used to sync to TDD downlink transmit.
57	STATO	Digital Out	General purpose Status Output as defined in Firmware Release Notes. 3.3V logic open-drain output with internal pull-up and can be wired-OR with other compatible signals. This pin can't drive a status LED directly.
58	DVDD33	Supply	+3.3V DC Supply Voltage for digital circuits. Requires a 1000pF shunt capacitance near Pin connection
59 60	DVDD19 TESTSEL0	Supply Digital In	+1.9V DC Supply Voltage for digital circuits To be connected to a GPIO pin from the same source as the SPI Interface. Has internal pull-down.
60 61	TESTSEL0 TESTSEL1	Digital In Reserved	Do not connected to a GPIO pin from the same source as the SPI interface. Has internal pull-down.
62	TESTSEL2	Reserved	Do not connect. Reserved for internal use. Has internal pull-up.
63	RESERVED8	Reserved	Do not connect. Reserved for internal use. Has internal pull-up.
64 65	DVDD19 GND PADDLE	Supply Supply	+1.9V DC Supply Voltage for digital circuits. Common Ground for entire integrated circuit. Also provides path for thermal dissipation.
00	JUD I NOULL	Cappiy	comment of carterior integrated encount. These provided path for informal dissipation.

ABSOLUTE MAXIMUM RATINGS

Warning: Any stress beyond the ranges indicated may damage the device permanently. The specified stress ratings do not imply functional performance in these ranges. Exposure of the device to the absolute maximum ratings for extended periods of time is likely to degrade the reliability of this product

OPERATING RATING

Operating Case Temperature.....-40°C to +80°C

DC Characteristics

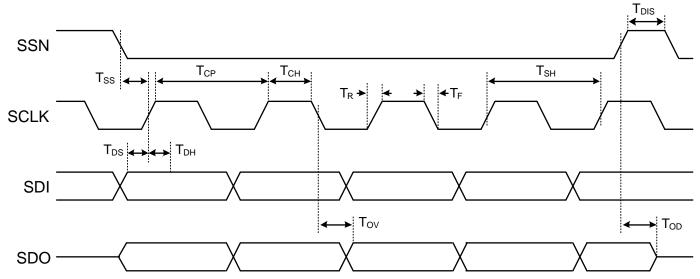
PARAMETER	MIN	TYP	MAX	UNITS
Supply Voltage (VDD33 to GND)	3.1	3.3	3.5	V
Supply Voltage (VDD19 to GND)	1.8	1.9	2.0	V
Supply Peak Current ¹ (VDD33 to GND)			150	mA
Supply Peak Current ¹ (VDD19 to GND)			900	mA
Average Power Dissipation: Fully Adaptive-power		980		mW

1 – Peak Current includes supplied decoupling network

RADIO FREQUENCY SIGNALS

PARAMETER	SYMBOL	CONDITIONS	MIN	RECOMMENDED	MAX	UNITS
Operating Frequency	f	Ultra Low-Band	470		862	MHz
RFIN_BLN Peak Range (into the Balun) for Maximum Correction	P _{rfin_bln_p}	Peak Power ¹	-5	3	5	dBm
RFIN_BLN RMS Range (into the Balun) for Maximum Correction	$P_{RFIN_BLN_P}$	RMS Power ²	-10	-7	-5	dBm
RFFB_BLN peak Range for Maximum Correction	$P_{RFFB_BLN_P}$	Peak Power ¹	-14	-4	-2	dBm
RFFB_BLN RMS Range for Maximum Correction	$P_{RFFB_BLN_P}$	RMS Power ²	-19	-14	-12	dBm
RFIN_BLN Operating Range (into the Balun) ²	$P_{RFIN_BLN_R}$	RMS Power	-40		-5	dBm
RFFB_BLN Operating Range ²	$P_{RFFB_BLN_R}$	RMS Power	-45		-12	dBm
Input Signal Bandwidth	BW _{signal}	Wideband Modulation	1.2		10	MHz
Noise Power at RFOUT ³		Out of Balun			-125	dBm/Hz

1 –Peak Power = RMS Power + Peak to Average Ratio (PAR)


2 – Assuming 5 to 10dB PAR.

3 - Worst case over PVT under typical input power and correction conditions.

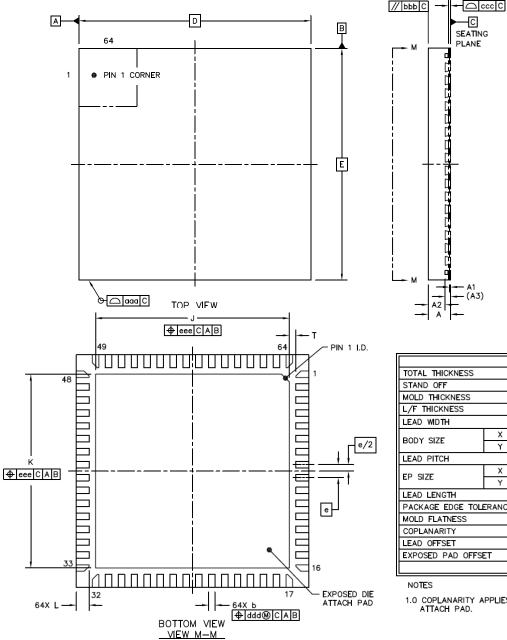
DIGITAL I/O – DC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS Input logic low	V _{IL}		-0.3		0.8	V
CMOS Input logic high	V _{IH}	VDD = 3.3V	2.0			V
CMOS Output logic low	V _{OL}				0.4	V
CMOS Output logic high	V _{OH}	VDD = 3.3V	2.4			V
CMOS Output Current	I _{OL} / I _{OH}				±1.0	mA

Serial Peripheral Interface (SPI) Bus Specifications

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Select Setup Time	T _{SS}		100			ns
Select Hold Time	T _{SH}		250			ns
Select Disable Time	T _{DIS}		100			ns
Data Setup Time	T _{DS}		25			ns
Data Hold Time	T _{DH}		45			ns
Rise Time	T _R				25	ns
Fall Time	T _F				25	ns
Clock Period	T _{CP}		250			ns
Clock High Time	Т _{СН}		100			ns
Time to Output Valid	T _{OV}				100	ns
Output Data Disable	T _{OD}				0	ns

Use of the SPI is optional as SC1887-03 is capable of fully autonomous operation. Use of the SPI interface offers the user access to certain monitoring and diagnostic functions as well as other planned advanced features. The SPI bus interface is also used to program the internal EEPROM, allowing field upgrades and firmware updates.


Package Information

The device is offered in a 9mm x 9mm, 64-pin, QFN leadless package with a 0.5mm lead pitch. This package has an exposed ground paddle on the bottom of the package which must be soldered to the ground plane of the printed circuit board. The paddle is important for thermal dissipation as well as electrical grounding performance. The leads and the ground paddle are finished with 100% matte-Sn and constructed using Green materials and is RoHS compliant.

THERMAL RESISTANCE CHARACTERISTICS

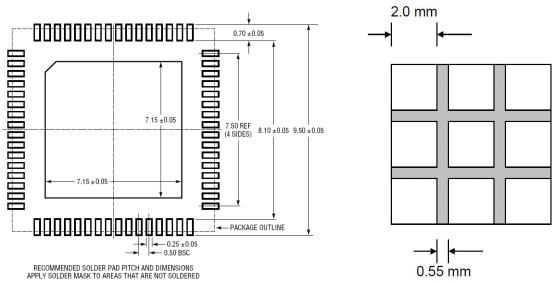
PARAMETER	SYMBOL	CONDITIONS	TYP	UNITS
Junction to Case Thermal Resistance	Θ _{JC}	Still Air	0.8	°C/W

RoHS PACKAGE MECHANICAL DIMENSIONS

$- M - \frac{1}{A_2} + \frac{A1}{A_2} $	
TOTAL THICKNESS	
STAND OFF	
	Г

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		A	0.8	0.85	0.9
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.65	0.67
L/F THICKNESS		A3		0.203 REF	
LEAD WIDTH		b	0.2	0.25	0.3
BODY SIZE	х	D		9 BS	C
BODT SIZE Y		E	9 BSC		
LEAD PITCH		e	0.5 BSC		
EP SIZE	х	J	7.4	7.5	7.6
EP SIZE	Y	к	7.4	7.5	7.6
LEAD LENGTH		L	0.45	0.5	0.55
PACKAGE EDGE TOL	ERANCE	aaa		0.1	
MOLD FLATNESS		bbb	0.1		
COPLANARITY		ccc	0.08		
LEAD OFFSET	ddd		0.1		
EXPOSED PAD OFFSET		eee		0.1	
		Т	0.15	0.25	0.35

.


.....

21011

.....

1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.

Recommended Solder Paste Pattern for GND Pad

Top Mark

Line	Top Mark	Description
1	SCINTERA	Company Name
2	SC1887	Product Part Number
3	XXXXXXXXXXX	Foundry Lot Number
		(up to 10 characters)
4	WW	Date Code - Work Week
	YY	Date Code - Year
	RRRR	Reserved

ESD Information

ESD (Electro-Static Discharge) sensitive device. Although this product incorporates ESD protection circuitry, permanent damage may occur on devices subjected to electrostatic discharges. Proper ESD precautions are recommended to avoid performance degradation or device failure.

Electro-Static Discharge (ESD) Protection Characteristics

Test Methodology	Class	Voltage	UNIT
Human Body Model (per JESD22-A114)	1C	1000	V
Charge Device Model (per JESD22-C101)	II	250	V

Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	UNIT
Per JESD22-A113	3	260	°C

Product Ordering Information_

Part Number	Description
SC1887A-03A00	IC, RFPAL, Frequency range (470-862MHz), FW revision (1.2.40)

Shipping designator:

E = 7" tape & reel

Append shipping designator (E) at end of part number. If left blank, designates bulk shipping option.

Evaluation Kit Ordering Information

Part Number	Description
SC1887-EVK500	Eval Kit, Frequency range (470-862MHz)
SC-USB-SPI	Adapter, SPI-USB Interface/Controller

For More Information Contact Scintera:

1154 Sonora Court, Sunnyvale, CA 94086 • 408-636-2600 • http://www.scintera.com