Features

- Exceptional Broadband Performance, 0.05 6.0 GHz
- Low Loss: T_X = 0.33 dB @ 2010 MHz, 5V / 20mA
- T_X = 0.38 dB @ 3.5 GHz, 5V / 20mA
- High Isolation: Rx = 44dB @ 2010 MHz, 20mA / 5V
- Rx = 36dB @ 3.5 GHz, 20mA / 5V
- High T_x RF Input Power = 50 W C.W. @ 2010MHz
- High Tx RF Input Peak Power > 1000 W
- Suitable for Very High Power TD-SCDMA & WiMAX Applications
- Surface Mount 4mm PQFN Package, RoHS* Compliant

Description and Applications

The MASW-000834-13560T is a SPDT Broadband, high linearity, common anode, PIN diode T/R switch for 0.05 - 6.0 GHz applications, including WiMAX & WiFi. The device is provided in industry standard 4mm PQFN plastic packaging. This device incorporates a PIN diode die fabricated with M/A-COM Technology Solutions patented Silicon-Glass HMICTM process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact 4mm PQFN package, SPDT switch offers wideband 0.05 - 6.0 GHz performance with excellent isolation to loss ratio for both $T_{\rm X}$ and $R_{\rm X}$ states. The PIN diode provides exceptional 50 W C.W. power handling and 65 dBm IIP3 at 2010 MHz for maximum switch performance.

Absolute Maximum Ratings¹

@ T_A = +25 °C (unless otherwise specified)

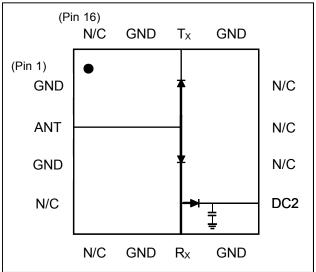
Parameter	Absolute Maximum
Forward Current	100 mA
Reverse Voltage (RF & D.C.)	-200 V
Operating Temperature	-40 °C to +85 °C
Storage Temperature	-55 °C to +150 °C
Junction Temperature	+175 °C
T _x Incident C.W. Power	50W (47 dBm) ² @ 2010MHz
T _X Peak Incident Power	>300 W, 5us, 1% duty

1. Exceeding these limits may cause permanent damage.

2. Baseplate Temperature must be controlled to a constant +25°C. See page 7 for derating curve.

1

* Restrictions on Hazardous Substances, European Union Directive


ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Rev. V7

Functional Diagram (TOP VIEW)

Pin Configuration:

(Center Metal Area is RF, D.C., and Thermal Ground)

Pin	Function Pin Funct		Function
1	GND	9	DC2
2	ANT	10	N/C
3	GND	11	N/C
4	N/C	12	N/C
5	N/C	13	GND
6	GND	14	ТХ
7	RX	15	GND
8	GND	16	N/C

Ordering Information

Part Number	Package
MASW-000834-13560T	Tape and Reel
MASW-000834-001SMB	Sample Board
MADR-008851-0001TB	Sample Board with recommended external Driver & MASW-000834- 13560T Switch

Static Sensitivity

These devices are rated Class 1B Human Body. Proper ESD control techniques should be used when handling these devices.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

- India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

Electrical Specifications at +25°C, Characteristic Impedance, 20mA / 5V, Z_0 = 50 Ω

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Тур.	Max.
F = 900 MHz	l I					
Insertion Loss, R_X	R _x IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.34	0.56
Insertion Loss, T_X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.26	0.445
Isolation, ANT To R_{X}	R _x ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	45.8	52.1	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	21.7	27.1	_
F = 1800 MHz			L			
Insertion Loss, R_X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.40	0.72
Insertion Loss, T_X	Tx IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	—	0.32	0.49
Isolation, ANT To R_X	Rx ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	43.7	48.9	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	18.4	21.4	
F = 2010 MHz						
Insertion Loss, R_X	R _x IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		0.42	0.75
Insertion Loss, T_X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.33	0.5
Isolation, ANT To R_X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	43.2	44.6	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	17.7	19.9	
Input Return Loss, T_X	T _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	32.1	_
Input Return Loss, R_x	R _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	24.2	_

2

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
s considering for development. Performance is based on target specifications, simulated results,
ind/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Not discuss the sum day devices and the formation in the second second second sector of the discussion of the second s

 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

 • India Tel: +91.80.43537383
 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM Te changes to the changes to

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications at +25°C, Characteristic Impedance, 20mA / 5V, Z_0 = 50 Ω

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Тур.	Max.
F = 2.3-2.7 GHz						
Insertion Loss, R_X	R _x IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.46	0.84
Insertion Loss, T_X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.35	0.525
Isolation, ANT To R_X	R _x ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	40.2	41.2	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	16.2	18.6	_
Input Return Loss, T_X	T _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	30.5	_
Input Return Loss, R_X	R _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	22.9	_
F = 3.3-3.8 GHz						
Insertion Loss, $R_{\rm X}$	R _x IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		0.56	1.0
Insertion Loss, T_X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.38	0.575
Isolation, ANT To R_X	R _x ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	33.7	35.9	_
Isolation, ANT To T_{X}	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	13.6	16.1	—
Input Return Loss, T_X	T _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	—	27.4	_
Input Return Loss, R_X	R _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	21.9	_
F = 4.9-5.9 GHz						
Insertion Loss, R_X	R _x IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	—	0.78	_
Insertion Loss, T_X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		0.52	_
Isolation, ANT To R_X	R _x ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	26.4	_
Isolation, ANT To T_X	T _x ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		11.8	_
Input Return Loss, T_X	T _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		20.3	_
Input Return Loss, R_x	R _x RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		24.2	_

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY : Data Sheets contain information regarding a product M/A-COM Technology

 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

 • India Tel: +91.80.43537383
 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
F = 900 MHz	L				I	I
Insertion Loss, R_X	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.27	_
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.22	_
Isolation, ANT To R_X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	53.3	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	27.4	_
F = 1800 MHz						
Insertion Loss, R_X	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.32	
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.27	_
Isolation, ANT To R_{X}	R _x ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	50.2	_
Isolation, ANT To T_{X}	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	21.6	_
F = 2010 MHz						
Insertion Loss, R_X	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.34	
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.28	_
Isolation, ANT To R_{X}	R _x ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	—	45.5	—
Isolation, ANT To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	20.1	—
Input Return Loss, T_X	T _x RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	33.1	—
Input Return Loss, R _X	R _x RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	24.1	_

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

		•				
Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
F = 2.3-2.7 GHz	1 1		I			
Insertion Loss, R_X	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.38	_
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.30	_
Isolation, ANT To R_X	R _x ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		41.8	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		18.7	_
Input Return Loss, T_X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		31.3	_
Input Return Loss, R_X	R _x RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		22.8	—
F = 3.3-3.8 GHz				I		1
Insertion Loss, R_X	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	—	0.47	_
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.33	_
Isolation, ANT To R_X	R _x ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	36.2	_
Isolation, ANT To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		16.2	_
Input Return Loss, T_X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	28.0	_
Input Return Loss, R_X	R _x RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		21.8	_
F = 4.9-5.9 GHz	L L		I			
Insertion Loss, R _x	R _x IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.72	
Insertion Loss, T_X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.48	_
Isolation, ANT To R_X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		26.6	—
Isolation, ANT To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	—	11.8	_
Input Return Loss, T_X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	20.5	_
Input Return Loss, R_x	R _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		24.2	_

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

 • India Tel: +91.80.43537383
 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Watt Switch for

Rev. V7

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

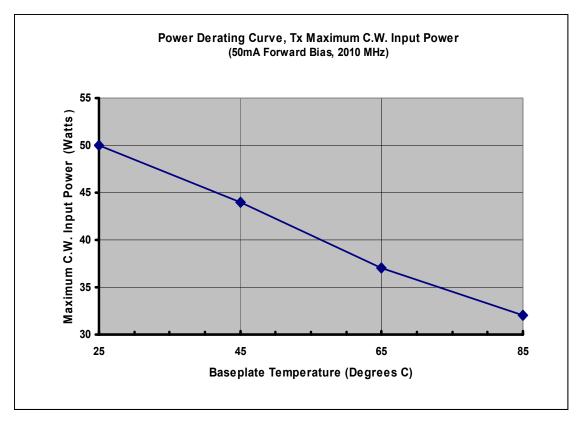
Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
T _X Input P1dB ²	T _X P1dB	2010 MHz, T _x to Antenna	dBm	_	>45.5	_
T _X 2 nd Harmonic	T _X 2Fo	2010 MHz, Pin = + 30 dBm	dBc	_	80	_
T _x 3 rd Harmonic	T _X 3Fo	2010 MHz, Pin = + 30 dBm	dBc		95	
T _X Input Third Order Intercept Point	T _X IIP3	Pi= +10dBm, F1 = 2010 MHz, F2 = 2020 MHz	dBm		>64	
T _X C.W. Input Power ²	T _x Pinc	F = 2010 MHz	dBm W	_	_	47 50
R _x C.W. Input Power	R _x Pinc	F = 2010 MHz	dBm W	_		41.5 14
T _X RF Switching Speed	t _{RF}	F = 2010 MHz (10-90% RF Voltage) 1MHz Rep Rate in Modulating Mode	ns	—	200	—

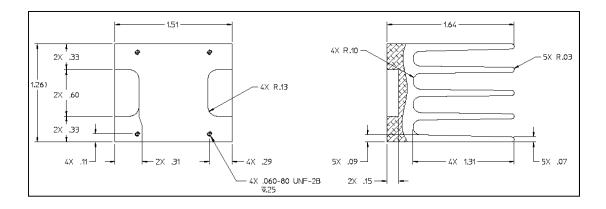
Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
T _x Input P1dB	T _x P1dB	3.5 GHz, T_X to Antenna	dBm		>45	—
T _X 2 nd Harmonic	T _X 2Fo	3.5 GHz, Pin = + 30 dBm	dBc		88	—
T _X 3 rd Harmonic	T _X 3Fo	3.5 GHz, Pin = + 30 dBm	dBc	-	105	_
T _X Input Third Order Intercept Point	T _X IIP3	Pi= +10dBm, F1 = 3.500 GHz, F2 = 3.510 GHz	dBm	_	>64	
R _x C.W. Input Power	R _x Pinc	F = 3.5 GHz	dBm W	_	_	40.5 11
T _x RF Switching Speed	t _{RF}	F = 3.5 GHz (10-90% RF Voltage) 1MHz Rep Rate in Modulating Mode	ns	_	200	_

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America
 Tel: 800.366.2266
 Europe
 Tel: +353.21.244.6400

 India
 Tel: +91.80.43537383
 China
 Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.


MASW-000834-13560T

Rev. V7


HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

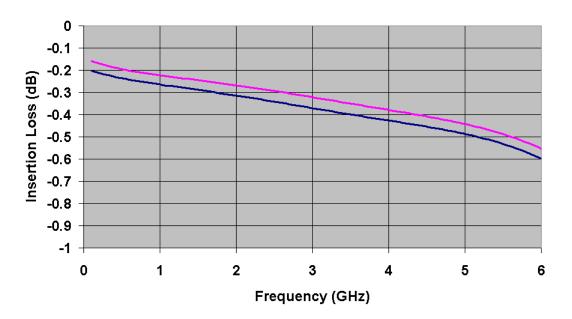
Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Note that this part must be held to a constant baseplate temperature to achieve the power handling results specified above. Adding a heatsink to the baseplate will improve performance to values greater than shown here. The increase in maximum input power from using a heatsink depends on the specific heatsink design.

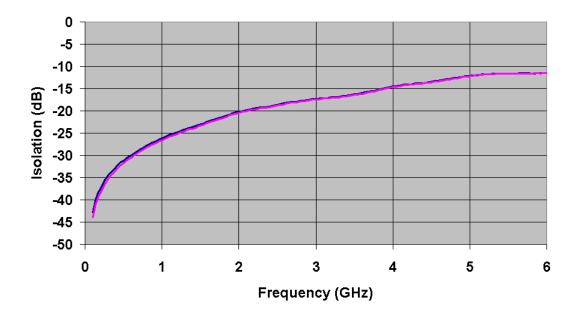
With a sample board mounted onto a heatsink of dimensions and fins shown below, this switch can handle up to 35 Watts C.W. of incident power.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Uppical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588


Visit www.macomtech.com for additional data sheets and product information.

Technology Solutions


HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

T_X Performance Curves at +25°C, Characteristic Impedance, $Z_0 = 50 \Omega$

Tx Insertion Loss 20mA & 50mA Forward Bias

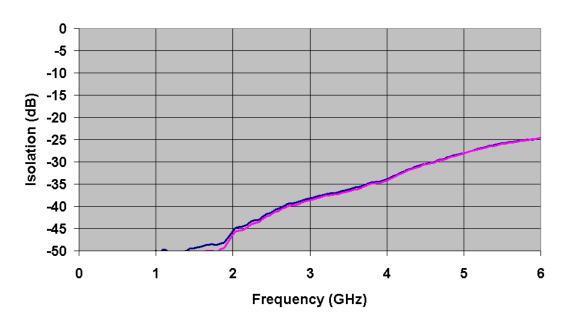
Tx Isolation 5V & 25V Reverse Bias

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

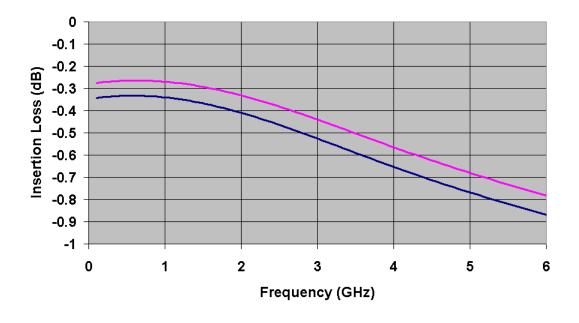
 • India Tel: +91.80.43537383
 • China Tel: +86.21.2407.1588

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

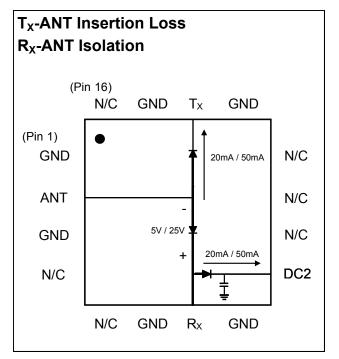


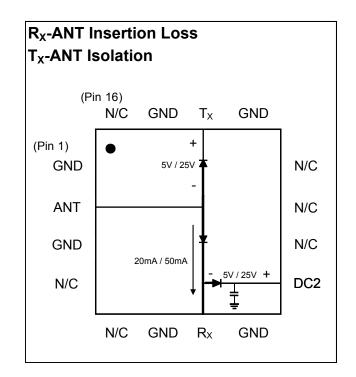
Rev. V7


HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

R_X Performance Curves at +25°C, Characteristic Impedance, $Z_0 = 50 \Omega$

Rx Insertion Loss 20mA & 50mA Forward Bias




ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

 • India Tel: +91.80.43537383
 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Bias Diagrams & Tables

Bias Table 1	T _x	R _X	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
T _x -ANT Insertion Loss	-20 mA	+5V, 0 mA	-20 mA	0V
R _x -ANT Isolation				
R _x -ANT Insertion Loss	+5V, 0 mA	-20 mA	+5V, 0 mA	0V
T _x -ANT Isolation				

Bias Table 2	T _x	R _x	DC2	ANT
	Pin 14	Pin 7	Pin 9	Pin 2
T _x -ANT Insertion Loss	-50 mA	+25V, 0 mA	-50 mA	0V
R _x -ANT Isolation				
R _x -ANT Insertion Loss	+25V, 0 mA	-50 mA	+25V, 0 mA	0V
T _x -ANT Isolation				

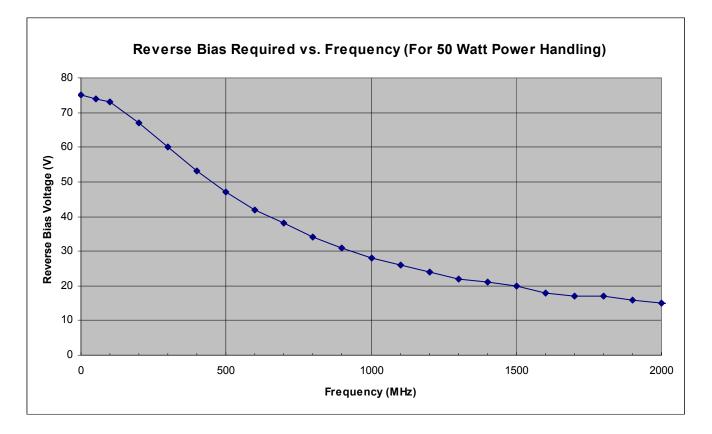
*Note - Diode Based Products require different minimum reverse bias voltages depending on the frequency and incident power levels. More details can be found on page 11 of this datasheet.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

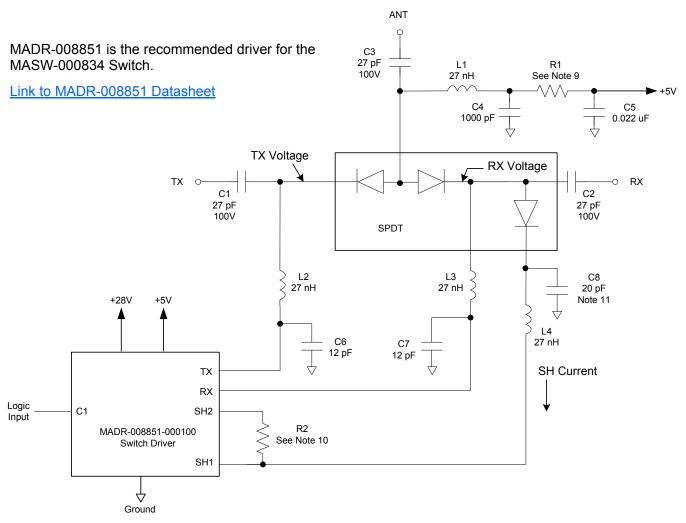


Rev. V7

MASW-000834 Minimum Required Reverse Bias Voltage

Minimum reverse bias voltage on a PIN diode based product varies with frequency of operation and incident power levels. As a rule of thumb, a designer can always use the magnitude of the peak RF voltage or empirically locate lower bias values than the peak RF voltage magnitude. However, it has been shown that lower DC voltages can be used depending on the RF environment in which a diode is placed. In the plot below, the minimum required reverse voltage vs. frequency is shown for an incident RF power of 50 Watts. This trend line will shift lower if the incident RF power is decreased. The biasing values have not been verified through measurement at M/A-COM Technology Solutions. As a result, please use the data below as a guide only for biasing requirements as this data is based solely on generic PIN diode equations.³

Please be cautious in that lower reverse bias levels can degrade isolation and distortion in a PIN diode based product.


[3] R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," *IEEE Transactions on Microwave Theory and Techniques*, Vol.38, No.12, December 1990

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

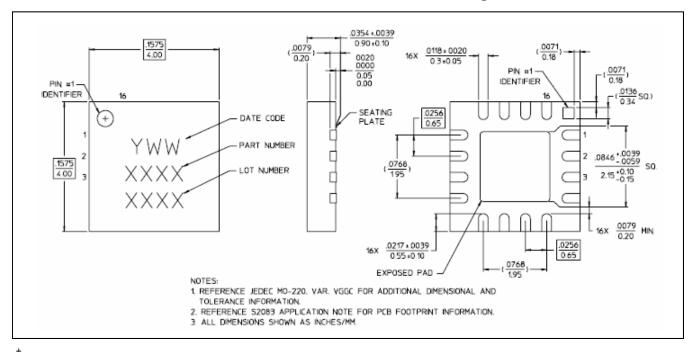
Visit www.macomtech.com for additional data sheets and product information.

North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588

MASW-000834 and Recommended Driver with +5V & +28V DC Power^{4,5,6,7,8,9,10,11}

- 4. Forward Bias Diode Voltage: Δ Vf is ~0.9V @ 22 mA; Δ Vf is ~1.0V @ 35 mA
- 5. R1 is calculated by (Vcc-1.5V)/I_{series}, where I_{series} is the desired bias current for the series diodes. For 21 mA load current, R1 = 165 Ω @ VCC = 5.0V and 82 Ω @ VCC = 3.3V. For 32 mA load current, R1 = 110 Ω @ VCC = 5.0V and 56 Ω @ VCC = 3.3V.
- R2 is calculated by (Vdd-1V)/I_{shunt}, where I_{shunt} is the desired forward bias current for the shunt diode. The power dissipation is calculated by I_{shunt} x 27V. For 20 mA of I_{shunt}, R2 should use a 2511, 1W, 1.3k ohm resistor.
- 7. C8 is already built-in for M/A-COM MASW-000834-13560T switch.
- 8. The voltage at the common anode will be approximately 1.5V.
- 9. The current in through the back-biased diodes will be the leakage current for the diodes
- 10. C1-C5, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz (values may vary based on the frequency).
- 11. There are 33 pF bypass capacitors included in the driver for the RX, TX, and SH1 ports. There are cases, especially at higher frequencies, where the optional 12 pF bypass capacitors (C6 and C7) that are shown on the schematic are needed.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions have under sub-learners in broad a perimetric tarth. Specifications on an


- North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
- India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MASW-000834-13560T Outline – 4mm PQFN 16-Lead Saw Singulated

⁺ Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Rev. V7

13