

2015-2016 High Performance Analog Product Catalog

Welcome to Peregrine Semiconductor

Peregrine Semiconductor Corporation, a Murata company, is the founder of RF silicon on insulator (SOI) and is a leading fabless provider of high-performance, integrated RF solutions. Since 1988 Peregrine and its founding team have been perfecting UltraCMOS® technology—a patented, advanced form of SOI—to deliver the performance edge needed to solve the RF market's biggest challenges, such as linearity. With products that deliver best-in-class performance and monolithic integration, Peregrine is the trusted choice for market leaders in automotive, broadband, industrial, Internet of Things, mobile devices, smartphones, space, test-and-measurement equipment and wireless infrastructure. A Murata company since December 2014, Peregrine holds more than 180 filed and pending patents and has shipped over 2 billion UltraCMOS units.

From its roots in government researchand-development innovation, Peregrine continues to revolutionize the industry with high-performance, integrated RF solutions.

Core Technology Benefits

UltraCMOS solutions provide high-performance RF, mixed-signal, passive elements and digital functions on a single device.

Intelligent Integration

Intelligent integration showcases Peregrine's ability to integrate RF, digital and analog components onto a single die. While integration has traditionally offered high-volume markets the benefit of lower cost, Peregrine uses intelligent integration to offer performance advantages such as configurability, flexibility, reliability, repeatability, ease-of-use and a reduced form factor.

Index	
Welcome to Peregrine Semiconductor 2	
Core Technology Benefits 2	2
Intelligent Integration with UltraCMOS [®] Technology 3	
High-performance RF Products 4	
General-purpose RF Switches 5	
TE / ATE Switches 6	5
True DC RF Switch 7	/
High-power RF Switches 7	/
Automotive AEC-Q100 Certified Switches	3
Wired Broadband 75Ω Switches	3
Monolithic Phase and Amplitude Controller (MPAC) g)
Glitchless Digital Step Attenuators (DSAs) 1	0
50Ω and 75Ω Digital Step Attenuators (DSAs) 1	0
Digital Phase Shifters 1	1
Power Limiting Devices 1	1
Phase-locked Loop (PLL) Frequency Synthesizers 1	2
Mixers 1	2
Digital Tuning Solutions 1	3
Quality and Reliability 14	
Going Green Starts on the Inside 1	5
RoHS-compliant Commercial Packaging Options 1	5
Design and Application Support 16	
Sales Offices 1	6

High-performance **RF Products**

RF complexity is growing exponentially as more wireless devices compete for signals throughout more frequency bands, and Peregrine continues to achieve several SOI industry firsts that offer RF engineers the widest range of high-performance RF choices. UltraCMOS products allow engineers the flexibility to prioritize attributes—like small form factor, low power consumption, high reliability, radiation-hardened, high ESD ratings, programmability, affordability, reduced board area based on use case.

Linearity Figure of Merit: Po.1dB

An UltraCMOS switch exhibits close to ideal linearity behavior up to the input 0.1dB compression point (P0.1dB), which remains invariant over power supply voltages.

UltraCMOS switches do not compress in the same manner as switches on other technology processes and a traditional P1dB measurement cannot be performed. Because UltraCMOS switch linearity is defined by the power handling capabilities of each switch, the P0.1dB compression point (derived from P_{MAX}) is used as the figure of merit to reflect each switch's true linearity performance.

Industry-leading Linearity Performance

PE42722 second and third harmonics ($P_{IN} = 65 \text{ dBmV}$)

The PE42722 SPDT RF switch for DOCSIS 3.1 features unmatched linearity performance enabled by UltraCMOS, the only technology capable of addressing the linearity challenges of the future.

General-purpose RF Switches

Peregrine's broadband and general-purpose RF switches deliver an industry-leading combination of insertion loss, isolation, linearity and settling time, while routing RF signals to their respective transmit or receive paths.

				Gen	eral-p	urpose	RFS	witch	es — t	50Ω				
	Product	Part	Product Highlight	Oper Frequen	rating cy (MHz)	Linearity IIP3/IIP2	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	V _{DD} Range	ESD HBM	Package
	Description	Number	0 0	Min	Max	(dBm)	(aBm)	Min	Max	Min	Max	(V)	(V)	
	SPST, A	PE4246	Low Insertion Loss	1	5000	53 /	33	0.8	1.3	44	55	2.7–3.3	200	6L 3×3 DFN
	SPDT, A	PE4251	Low Insertion Loss	10	3000	59 /	30.5	0.55	0.75	43	62	3.0–3.6	4000	8L MSOP
	SPDT, A	PE4257	High Isolation	5	3000	55 / 80	31	0.75	1.2	44	64	2.7–3.3	1000	20L 4×4 QFN
NEV	SPDT, A & R	PE42020	True DC	0 Hz	8000	62 / 115	38	0.6	1.1	34	48	11–154	1000	20L 4×4 QFN
	SPDT, A	PE42420 ²	High Isolation	100	6000	65 / 110	33	0.95	1.6	50	69	2.7–5.5	4000	20L 4×4 LGA
	SPDT, A	PE42520	Broadband	0.009	13000	66 / 120	39	0.6	2.0	18	90	2.3–5.5	4000	16L 3×3 QFN
	SPDT, A	PE42521	Broadband, FS ³	0.009	13000	65 / 120	38	0.6	1.85	17	90	2.3–5.5	3000	16L 3×3 QFN
NEV	SPDT, A	PE42522	Broadband	0.009	26500	59 / 121	33	0.7	5.3	22	73	2.3–5.5	3500	29L 4×4 LGA
NEV	ISPDT, A	PE42523	Broadband, FS ³	0.009	26500	59 / 125	33	0.75	5.7	22	75	2.3–5.5	2500	29L 4×4 LGA
NEV	SPDT, A	PE42553	Broadband	0.009	8000	66 / 120	39	0.6	0.85	41	90	2.3–5.5	4000	16L 3×3 QFN
	SPDT, R	PE4239	Low Insertion Loss	10	3000	45 /	27	0.7	0.9	23	32	2.7–3.3	1500	6L SC70
	SPDT, R	PE4245	Low Insertion Loss	10	4000	45 /	27	0.6	0.7	32	42	2.7–3.3	1500	6L 3×3 DFN
	SPDT, R	PE4250	Low Insertion Loss	10	3000	59 /	30.5	0.6	0.75	40	51	3.0–3.6	4000	8L MSOP
	SPDT, R	PE4259	Low Insertion Loss	10	3000	55 / —	34	0.35	0.5	20	30	1.8–3.3	2000	6L SC70
NEV	SPDT, R	PE423422 ²	Automotive	100	6000	73.5 / 115	34	0.25	0.9	16	41	2.3–5.5	1000	12L 2×2 QFN
	SPDT, R	PE42359 ²	Automotive	10	3000	55 / —	33.5	0.35	1.1	14	35	1.8–3.3	2000	6L SC70
	SPDT, R	PE42421	Low Insertion Loss	10	3000	55 / —	30.5	0.35	0.5	20	30	1.8–3.3	2000	6L SC70
	SPDT, R	PE42422	Low Insertion Loss	5	6000	70 / 115	34	0.23	0.9	17	68	2.3–5.5	4000	12L 2×2 QFN
	SPDT, A	PE42423	High Isolation	100	6000	65 / 120	39.5	0.8	0.95	41	51	2.3–5.5	3000	16L 3×3 QFN
	SPDT, R	PE42424 ²	High Isolation, FS ³	100	6000	61 / 125	41	0.8	0.95	34	47	2.3–5.5	2500	6L 1.5×1.5 DFN
NEV	SPDT, R	PE42524	Wideband	10	40000	50 /	32.5	0.6	5.5	33	84	-	2000	Flip Chip
	SPDT, R	PE42551	Broadband	0.009	6000	50 /	34	0.55	0.9	21	29	2.5-3.0	500	20L 4×4 QFN
	SPDT, R	PE42820	High Power	30	2700	85 /	45.5	0.3	0.7	24	35	2.3–5.5	1500	32L 5×5 QFN
	SPDT, R	PE42821	High Power, FS ³	100	2700	82 / -	45.5	0.4	0.8	24	35	2.3–5.5	1500	32L 5×5 QFN
	SP3T, R	PE42430	Low Insertion Loss	100	3000	66 / 100	30	0.45	0.55	30	40	3.0-5.5	4500	8L 1.5×1.5 DFN
	SP4T, A	PE42441	Low Insertion Loss	10	8000	58 / 110	31	0.8	1.2	31	45	3.0-3.55	2000	32L 5×5 LGA
	SP4T, A	PE42442 ²	High Isolation	30	6000	58 / 97	35	0.9	1.9	32	61	2.3–5.5	2000	24L 4×4 QFN
	SP4T, A	PE42540	Broadband	0.00001	8000	58 / 100	33	0.7	1.2	31	84	3.0–3.6	1000	32L 5×5 LGA
NEV	SP4T, A	PE42542	Broadband	0.009	18000	58 / 118	33	0.7	3.1	27	90	2.3–5.5	3500	29L 4×4 LGA
NEV	SP4T, A	PE42543	Broadband, FS ³	0.009	18000	59 / 113	33	0.7	3.2	29	90	2.3–5.5	2500	29L 4×4 LGA
NEV	ISP4T, R	PE423641 ²	Automotive	50	3000	68 / 115	37	0.5	0.95	22	32	2.65-3.3	2000	16L 3×3 QFN
	SP4T, R	PE42440	Low Insertion Loss	50	3000	67 / 96	41.5	0.45	0.85	22	34	2.7–3.3	2000	16L 3×3 QFN
	SP4T, R	PE42641	Low Insertion Loss	100	3000	-	-	0.45	0.55	27.5	35	2.65–2.85	2000	16L 3×3 QFN
	SP5T, A	PE42451	High Isolation	450	4000	58 / 95	35	1.6	2.25	50	68	2.7–3.3	3500	24L 4×4 QFN
	SP5T, A	PE42452 ²	High Isolation	450	4000	57 / 96	35	0.95	1.6	44	61	2.3-5.5	3500	24L 4×4 QFN
	SP(3/5)T, R	PE42850	High Power	30	1000	42 /	45.5	0.25	0.35	30	36	2.3–5.5	1500	32L 5×5 QFN
	SP(3/5)T, R	PE42851	High Power, FS ³	100	1000	42 /	45.5	0.25	0.4	30	36	2.3–5.5	1500	32L 5×5 QFN

Note 1: Absorptive (A) or Reflective (R). **Note 2:** Operating temperature up to +105 °C. Note 4: Requires external negative voltage (V_{SS}, -11V to -15V) for operation. See datasheet for details.

Note 3: Fast switching.

TE / ATE Switches

Peregrine offers complementary devices for test equipment (TE) and automated test equipment (ATE) applications. HaRP^M technology enhancements reduce gate lag and insertion loss drift while maintaining high linearity and isolation over an extended frequency range up to 40 GHz.

						TE/#	ATE Sw	vitches	i — 50	2				
	Product	Part	Oper Frequen	rating cy (MHz)	Linearity IIP3/IIP2	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	Settling Time	Switching Time	ESD HBM	Package
	Description	Number	Min	Max	(dBm)	(ubiii)	Min	Max	Min	Max	(μs) ²	(μs) ³	(V)	
	SPDT, A	PE42520	0.009	13000	66 / 120	39	0.6	2.0	18	90	15	5.5	4000	16L 3×3 QFN
	SPDT, A	PE42521	0.009	13000	65 / 120	38	0.6	1.85	17	90	2	0.5	3000	16L 3×3 QFN
NEV	SPDT, A	PE42522	0.009	26500	59 / 121	33	0.7	5.3	22	73	7	3	3500	29L 4×4 LGA
NEV	SPDT, A	PE42523	0.009	26500	59 / 125	33	0.75	5.7	22	75	2	0.5	2500	29L 4×4 LGA
NEV	SPDT, A	PE42553	0.009	8000	66 / 120	39	0.6	0.85	41	90	15	5.5	4000	16L 3×3 QFN
NEV	SPDT, R	PE42524	10	40000	50 / -	32.5	0.6	5.5	33	84	0.84	0.225	2000	Flip Chip
	SPDT, R	PE42551	0.009	6000	50 / -	34	0.55	0.9	21	29	-	7	500	20L 4×4 QFN
	SP4T, A	PE42540	.00001	8000	58 / 100	33	0.7	1.2	31	84	15	5	2000	32L 5×5 LGA
NEV	SP4T, A	PE42542	0.009	18000	58 / 118	33	0.7	3.1	27	90	7	3	3500	29L 4×4 LGA
NEV	SP4T, A	PE42543	0.009	18000	59 / 113	33	0.7	3.2	29	90	2	0.5	2500	29L 4×4 LGA

Note 1: Absorptive (A) or Reflective (R). Note 2: 50% CTRL to 0.05 dB final value. Note 3: 50% CTRL to 90% or 10% RF.

High-frequency Examples: Breakthrough RF Performance

UltraCMOS high-frequency switches provide best-in-class, stable and consistent performance across the entire frequency range.

PE42524 Insertion Loss

Predictable and smooth insertion loss behavior over a broad frequency range.

PE42524 Isolation

Ground-breaking port-to-port isolation of 50 dB at 35 GHz.

Note: For additional information about optimizing high-frequency performance, please see application note AN42.

True DC RF Switch

1

Peregrine's new UltraCMOS PE42020 is the industry's first and only RF integrated switch to operate at zero Hz. This True DC RF switch features high power handling and maintains excellent RF performance and linearity from DC through 8000 MHz.

					Tr	ue DC	RF Sv	vitch –	- 50Ω					
	Product	Part	Operating	Frequency	Linearity IIP3/IIP2	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	Settling Time	Switching Time	ESD HBM	Package
	Description	Number	Min	Max	(dBm)	(автт)	Min	Max	Min	Max	(μs)²	(μs) ³	(V)	-
IEW	SPDT, A & R ¹	PE42020	0 Hz	8000 MHz	62 / 115	38	0.6	1.1	34	48	35	10	1000	20L 4×4 QFN

Note 1: Configurable 50Ω Absorptive (A) or open Reflective (R) switch. Note 2: 50% CTRL to 0.05 dB final value.

Note 3: 50% CTRL to 90% or 10% RF.

PE42020 Power Handling

The PE42020 exhibits high power handling of 30 dBm at 0 Hz and 36 dBm at 8 GHz. This graph shows the maximum RF input power (P_{IN_MAX}) for pulsed, CW and CW/pulsed at 0 °C to +85 °C ambient temperature, $V_{DD} = +15V$, and $V_{SS} = -15V$.

High-power RF Switches

UltraCMOS high-power switches change the paradigm of high-power switch design by providing a solution that delivers a cost-effective, simple to design-in long-term solution—a small footprint, monolithic, turnkey design with extremely low power consumption, excellent harmonic performance and high power handling.

	High-power RF Switches — 50Ω														
Product	Part Number	Oper Frequen	ating cy (MHz)	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	Harmonics 2fo/3fo	ESD HBM	Package				
Description		Min	Max	(автт)	Min	Max	Min	Max	(dBc)	(V)					
SPDT, R	PE42820	30	2700	45.5	0.3	0.7	24	35	-94 / -84	1500	32L 5×5 QFN				
SPDT, R	PE42821	100	2700	45.5	0.4	0.8	24	35	-82 / -85	1500	32L 5×5 QFN				
SP3T/SP5T, R	PE42850	30	1000	45.5	0.25	0.35	30	36	-90 / -90	1500	32L 5×5 QFN				
SP3T/SP5T, R	PE42851	100	1000	45.5	0.25	0.4	30	36	-80 / -80	1500	32L 5×5 QFN				

Note: * Reflective (R).

Automotive AEC-Q100 Certified Switches

Peregrine's automotive RF switches are AEC-Q100 Grade 2 certified and capable of supporting operating temperatures up to +105 $^{\circ}$ C.

				A	utomoti	ve AE(C-Q10	0 Cert	ified S	Switch	nes			
	Product	Part	Oper Frequen	ating cy (MHz)	Linearity IIP3/IIP2	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	Typical I _{DD}	V _{DD} Range	ESD HBM	Package
	Description	Number	Min	Max	(dBm)	(авш)	Min	Max	Min	Max	(μ <i>Α</i> @3V)	(V)	(V)	
NEV	SPDT, R	PE423422	100	6000	73.5 / 115	34	0.25	0.9	16	41	120	2.3–5.5	1000	12L 2×2 QFN
	SPDT, R	PE42359	10	3000	55 / —	33.5	0.35	1.1	14	35	9	1.8–3.3	2000	6L SC70
	SP4T, R	PE423641	50	3000	68 / 115	37	0.5	0.95	22	32	13	2.65-3.3	2000	16L 3×3 QFN

Note: * Reflective (R).

Wired Broadband 75 Switches

Simplify your next RF design with high-performance UltraCMOS 75 Ω switches. Excellent isolation, low insertion loss and a CMOS / TTL compatible control allow Peregrine RF switches to address the needs of most wired broadband applications.

			١	Vired	Broac	Iband Sv	witche	es — 7	5Ω					
	Product	Part	Product Highlight	Oper Frequen	ating cy (MHz)	CTB / CSO	P0.1dB	Insertion	Loss (dB)	Isolatio	on (dB)	V _{DD} Range	ESD HBM	Package
	Description	Number		Min	Max	(UDC)	(авш)	Min	Max	Min	Max	(V)	(V)	
	SPST, A	<u>PE4270</u>	Low Insertion Loss	1	3000	-90 ²	30	0.5	0.7	63	90	2.7–3.3	500	6L 3×3 DFN
	SPDT, A	PE4256	Low Insertion Loss	5	3000	-90 ²	31	0.5	1.1	52	80	2.7–3.3	1000	20L 4×4 QFN
	SPDT, A	PE4280	High Isolation	5	2200	-85 ²	26	0.5	1.1	47	72	2.7–3.3	1000	20L 4×4 QFN
	SPDT, A	PE42720	High Isolation	5	3000	-104 ³	31	0.6	1.0	60	70	2.7–5.5	2500	20L 4×4 LGA
	SPDT, A	PE42721	Low Insertion Loss	5	2200	-99 / <-105	27	0.4	0.65	53	85	2.3–5.5	3000	12L 3×3 QFN
EW	SPDT, R	PE42722	High Linearity, DOCSIS 3.1	5	1794	Note 4	Note 5	0.2	0.85	29	50	2.3–5.5	1500	32L 5×5 QFN

Note 1: Absorptive (A) or Reflective (R).

Note 2: CTB / CSO measured with 77 and 110 channels; PO = 44 dBmV. **Note 3:** CTB / CSO measured with 159 channels; PO = 42 dBmV.

Note 4: This product is specified for DOCSIS 3.1. See datasheet for harmonics specs.

Note 5: P0.1dB = 88 dBmV.

		Wirec	Broad	dband Sv	witches -	— 75 Ω	— Wit	h Unpo	wered O	peratio	n	
Product Description ¹	Part	Ope Frequer	rating icy (MHz)	CTB / CSO	P1dB ² pwr / unpwr	Insertion (d	Loss pwr B)	lsola pwr / un	ation pwr (dB)	V _{DD} Range	ESD	Package
Description	Number	Min	Max	(UDC)	(dBm)	Min	Max	Min	Max	(v)		
SPDT, A	PE42742	5	2200	-90 / -77 ³	32 / 26.5	0.45	1.7	53 / 52.5	94 / 90.5	2.7–3.3	3500	20L 4×4 QFN
SPDT, A	PE42750	5	2200	-81 / -110 ⁴	23.5	0.7	1.7	57 / 72	84 / 90	2.7–3.6	2000	12L 3×3 QFN

Note 1: Absorptive (A). Note 2: Measured at 1 GHz.

Note 3: CTB / CSO measured with 77 and 110 channels; PO = 44 dBmV. **Note 4:** CTB / CSO measured with 159 channels; PO = 42 dBmV.

Our general-purpose reflective 50Ω switches can also be used in a 75Ω environment.

Ń

Monolithic Phase and Amplitude Controller (MPAC)

Designed for the LTE and LTE-A wireless-infrastructure transceiver market, the UltraCMOS MPAC device is ideally suited to enhance system performance, lower bill of material (BOM) costs, increase reliability and provide maximum tuning flexibility for Doherty amplifier architectures found in wireless infrastructure applications.

		Мо	nolithic Pha	ase and A	mplit	ude C	ontroll	er (M	PAC)	— 50Ω			
	Product Description,	Phase (°) (range / steps)	Attenuation (dB) (range / steps)	Programming Mode	Oper Frequen	ating cy (GHz)	Insertion Loss	Input IP3	P0.1dB	V _{DD} Range	I _{DD}	ESD HBM	Package
	Part Number	5 bits	4 bits	Mode	Min	Max	(dB)	(dBm)	(ubiii)	(V)	(μ-τ)	(V)	
NEW	5/4-bit – PE46120	-87.2 / 2.8	7.5 / 0.5	Serial	1.8	2.2	6.9	60	35	2.3-5.5	350	1000	32L 6×6 QFN

Relative Phase RFIN to RFOUT (All Phase States)

The PE46120 is highly monotonic over a broad frequency range for all RF_{OUT1}/RF_{OUT2} phase states.

Phase Variation Across Atten State

Excellent phase stability across all RF_{OUT} *attenuation states.*

Isolation Output Ports (All States)

High isolation across all phase and attenuation states.

Glitch-less Digital Step Attenuators (DSAs)

Peregrine's new glitch-less DSAs feature a novel architecture to provide the best-in-class glitch-less transition behavior when changing attenuation states and is specified to support temperatures all the way up to 105 °C.

		Glite	ch-less Digit	al Ste	p Atte	nuato	ors (N	lono	lithic) — 50 Ω			
	Product Description,	Attenuation (dB)	Programming	Oper Frequen	ating cy (MHz)	Insertic (d	on Loss B)	Input IP3	Attenuation Accuracy	Switching Speed	ESD HBM	Package
	Part Number	(range / steps)	Wode	Min	Max	Min	Max	(dBm)	(UB @ 2.2 GHZ)	(μs)	(V)	
NEW	7-bit – <u>PE43711</u>	31.75 / 0.25, 0.5, 1.0	Parallel ² , Serial	0.009	6000	1.3	2.4	57	±(0.15 + 1.5% of setting)	0.275	3000	24L 4×4 QFN
NEW	7-bit - <u>PE43712</u>	31.75 / 0.25, 0.5, 1.0	Parallel ² , Ser-Add. ³	0.009	6000	1.3	2.45	57	±(0.20 + 1.5% of setting)	0.275	3000	32L 5×5 QFN
NEW	7-bit - <u>PE43713</u> 1	31.75 / 0.25, 0.5, 1.0	Parallel ² , Ser-Add. ³	0.009	6000	1.3	2.45	57	±(0.20 + 1.5% of setting)	0.275	3000	32L 5×5 QFN

Note 1: External V_{SS} option.

Note 2: Parallel Modes: Latched and Direct.

Note 3: Serial-Addressable Mode.

Glitch-less Attenuation Transient: 15.75 to 16 dB

Glitch-less Attenuation Transient: 16 to 15.75 dB

Typical Switching Time = 275 ns

50Ω and 75Ω Digital Step Attenuators (DSAs)

		Digital Step Attenuators (Monolithic) — 50Ω Product Description, Part Number Attenuation (dB) (range / steps) Programming Mode Operating Frequency (MHz) Insertion Loss (dB) Input IP3 (dBm) Attenuation Accuracy (dB@1 GHz) Switching Speed (dBm) ESD HBM (V) Package														
	Product Description,	Attenuation (dB)	Programming	Oper Frequen	ating cy (MHz)	Insertic (d	on Loss B)	Input IP3	Attenuation Accuracy	Switching Speed	ESD HBM	Package				
	Part Number	(range / steps)	wode	Min	Max	Min	Max	(dBm)		(μs)	(V)	-				
	2-bit – <u>PE43205</u> 1	18 / 6, 12	Parallel	35	6000	0.5	1.05	61	+0.10	0.029	2000	12L 3×3 QFN				
NEV	6-bit – <u>PE4312</u> 1	31.5 / 0.5	Parallel ² , Serial	1	4000	1.3	2.1	59	±(0.15 + 2% of setting)	0.6	2000	20L 4×4 QFN				
	7-bit – <u>PE43704</u>	31.75 / 0.25, 0.5, 1.0	Par ² , Ser, Ser-Add. ³	0.009	8000	1.3	2.4	61	+(0.15 + 3% of setting) -(0.1 + 1% of setting)	1.1	1500	32L 5×5 QFN				
	7-bit – <u>PE43705</u> 1	31.75 / 0.25, 0.5, 1.0	Par ² , Ser, Ser-Add. ³	50	8000	1.3	2.4	65	+(0.15 + 1.5% of setting) -(0.1 + 1% of setting)	1	1500	32L 5×5 QFN				

Note 1: Operating temperature up to +105 °C.

Note 2: Parallel Modes: Latched and Direct.

Note 3: Serial-Addressable Mode.

Broadband Digital Step Attenuators (Monolithic) — 75Ω

Product Description,	Attenuation (dB)	Programming	Oper Frequen	ating cy (MHz)	Insertion Loss	Input IP3	Attenuation Accuracy	Switching Speed	ESD HBM	Package
Part Number	(range / steps)	wode	Min	Max	(dB)	(dBm)		(μs)	(V)	
4-bit – <u>PE43404</u>	15 / 1.0	Parallel*, Serial	1	2000	1.4	52	±(0.25 + 7% of setting)	1	500	20L 4×4 QFN
5-bit – <u>PE4307</u>	15.5 / 0.5	Parallel*, Serial	1	2000	1.4	52	±(0.15 + 4% of setting)	1	500	20L 4×4 QFN
5-bit – <u>PE4308</u>	31 / 1.0	Parallel*, Serial	1	2000	1.4	52	±(0.20 + 4% of setting)	1	500	20L 4×4 QFN
6-bit – <u>PE4304</u>	31.5 / 0.5	Parallel*, Serial	1	2000	1.4	52	±(0.15 + 4% of setting)	1	500	20L 4×4 QFN

Note: * Parallel Modes: Latched and Direct.

Digital Phase Shifters

Get flexibility for the most design stringent requirements with high linearity, excellent harmonic performance, extended phase range, high resolution, low RMS phase and amplitude error and dual programming options.

	Digital Phase Shifters (Monolithic) — 50 Ω													
	Part Number	Operating Frequency (GHz)	Bit #	Range (°)	Resolution (°)	Insertion Loss (dB)	RMS Phase Error (°)	RMS Amplitude Error (dB)	Settling Time (ns)	V _{DD} Range (V)	ESD HBM (V)	Package		
NEV	PE44820 ¹	1.7–2.2	8	358.6	1.4	6	1.05	0.15	355	2.3–5.5	1000	32L 5×5 QFN		

Note: * Operating temperature up to +105 °C.

Power Limiting Devices

Peregrine's power limiters represent the industry's first turnkey, monolithic solutions to provide an alternative to discrete, PIN-diode limiters based on gallium arsenide (GaAs). UltraCMOS power limiters deliver simple, repeatable and reliable protection, ideal for test-and-measurement, land mobile radio (LMR), wireless-infrastructure, military and radar systems.

	Power Limiters													
	Part Number	Operation Modes	eration Modes Operating Frequency (dBn		Max Power Ha	andling (dBm) CW (10W)	Input IP3 (dBm)	Control Voltage Range (V)*	ESD HBM (V)	Package				
NEW	PE45140	Limiting, Reflecting	20–2000 MHz	22–32	47	40	64	-2.5 to -0.5	8000	12L 3×3 QFN				
NEV	PE45450	Limiting, Reflecting	9 kHz–6 GHz	25–35	47	40	70	-2.5 to -0.5	8000	12L 3×3 QFN				

Note: * Limiting Mode.

Replacing GaAs Solutions

An UltraCMOS power limiting device is up to eight times smaller than traditional GaAs solutions and offers better linearity, versatility and reliability.

Phase-locked Loop (PLL) Frequency Synthesizers

Peregrine's Integer-N PLLs are ideal for base station systems — local multiband distribution service (LMDS), multichannel multiband distribution service (MMDS), wireless local loop (WLL) — as well as RF frequency generation; L-, S- and C-band synthesizers; and clock recovery in communication systems, mobile terminals, telemetry, radar and portable radios.

	Integer-N Phase-locked Loop (PLL) Frequency Synthesizers													
	Part		Programming	Max Input Operating Freq			Drassalar	Main	Reference	Typical Idd	ESD			
	Number	Туре	Mode	(GHz) RF PLL	(MHz) Ref	(MHz) Compare	Prescaler	M, A	Counters	(mA @ 2.8V)	(V)	Package		
NEV	PE33241 ¹	PD	Serial, Hardwire	4 (5/6 bit) 5 (10/11 bit)	100 (prescaler) 800 (bypass)	100	5/6, 10/11, bypass	9-bit, 4-bit	6-bit	75	1000	48L 7×7 QFN		
	PE83336 ^{2,3}	PD	Parallel, Serial, Hardwire	3	100	20	10/11	9-bit, 4-bit	6-bit	20	1000	44L CQFJ		

Note 1: V_{DD} range = 2.65–2.95V. **Note 2:** V_{DD} range = 2.85–3.15V. Note 3: Not available for Space Level Screening.

Mixers

Peregrine's UltraCMOS mixers are broadband, quad MOSFET (metal-oxide-semiconductor field-effect transistor) array cores. The integrated receive mixers feature high linearity, strong low-frequency performance, monolithic integration and high reliability, making them easier to implement and more dependable than gallium arsenide (GaAs)-based MOSFET arrays.

	Mixer Core ¹													
Part Number	Opera	ting Frequency (LO Drive	Conv Loss	Isolation	(dB, typ)	Input IP3	ESD	Dookogo					
Fait Number	LO	RF	IF, Nom	(dBm)	(dB)	LO-RF	LO-IF	typ)	пылі (V)	Fackage				
PE4140 ²	0.01–6000	0.01-6000	0.01-6000	0–20	6.5–7.5	25–40	25–40	36	100	6L 3×3 DFN, DIE				
PE4141 ²	0.01-1000	0.01–1000	0.01–1000	0–20	7.0–8.0	40	40	33	100	8L MSOP				

Note 1: Fully differential DC coupled ports. External baluns required.

Note 2: MOSFET Quad Array.

High-reliability Products

Peregrine Semiconductor's UltraCMOS silicon on sapphire (SOS), a patented variation of silicon-on-insulator (SOI) technology, has achieved significant performance milestones in reliability and RF performance, making them well suited for demanding High-reliability (Hi-Rel) designs. UltraCMOS products are designed to meet stringent low-power requirements of telecom, infrastructure, microwave and VSAT military radios, radar and ECM space systems and test instrumentation applications. All Hi-Rel devices are available in ceramic hermetic packaging and in die form. Screening is available for commercial space designs. Orsean Control Control

Scan the QR code to learn more about Peregrine's High-reliability products.

Digital Tuning Solutions

In complex radio designs where detuning can cause increased filter loss, power amplifier (PA) inefficiencies and antenna mismatch, signal-chain performance can be significantly improved with a monolithically integrated solid-state impedance tuning solution. Peregrine's digitally tunable capacitor (DTC) and tunable control switch products continue a tradition of innovation, high performance and ease-of-use by offering tunability, high-voltage handling and excellent linearity.

Digitally Tunable Capacitors													
Part	Interface	Operating Frequency (MHz)		Min Shunt	Max Shunt	Tuning	Quality Factor (Shunt, 1 GHz)		Peak Operating	V _{DD}	ESD	Daskara	
Number		Min	Max	(pF)	(pF)	(Shunt)	Cmin	Cmax	Voltage (V _{PK})	(V)	(V)	T ackage	
PE64101	SPI	100	3000	1.38	5.90	4.3:1	50	20	6	2.3–3.6	2000	12L 2×2 QFN	
PE64102	SPI	100	3000	1.88	14	7.4:1	50	20	6	2.3–3.6	2000	12L 2×2 QFN	
PE64904	SPI	100	3000	1.10	5.10	4.6:1	35	25	30	2.3–3.6	1500	10L 2×2 QFN	
PE64905	I ² C	100	3000	1.10	5.10	4.6:1	35	25	30	2.3–3.6	1500	10L 2×2 QFN	
PE64906	SPI	100	3000	0.90	4.60	5.1:1	40	19	30	2.3–4.8	2000	10L 2×2 QFN	
PE64907	SPI	100	3000	0.85	2.40	2.82:1	40	34	30	2.3–4.8	2000	10L 2×2 QFN	
PE64908	SPI	100	3000	2.15	7.70	3.6:1	40	13	30	2.3–4.8	2000	10L 2×2 QFN	
PE64909	SPI	100	3000	0.60	2.35	3.9:1	40	27	30	2.3–4.8	2000	10L 2×2 QFN	

Tuning Control Switches

Product Description*	Part Number	Operating Frequency (MHz)		Interface	R _{ON} (Ω)	C _{OFF} (pF)	V _{DD} Range (V)	ESD HBM (V)	Package
SPST	PE613010	100	3000	GPIO	1.2	0.40	2.3–5.5	2000	10L 2×2 QFN
SP4T	PE613050	100	3000	GPIO	1.6	0.14	2.3–5.5	2000	12L 2×2 QFN

Note: * Open reflective switches.

Antenna Impedance Tuning

The DTC tuner increases power delivered to the antenna by eliminating mismatch loss.

Tunable Matching Networks

Match the desired impedance to 50Ω or other impedance over broadband (700-2200 MHz) to minimize mismatch loss.

Quality and **Reliability**

We are committed to providing high-quality products and services that meet or exceed our customers' expectations. We have developed and implemented a quality management system to create an organizational environment designed to meet the highest level of quality and reliability standards. Our quality management system has been certified and maintained to ISO 9001 standards since 2001. We achieved AS9100 Quality Management System Standards certification in 2003 to address the strict quality system requirements of the aerospace industry. In early 2012, we further improved the robustness of our quality management system by receiving our ISO/TS 16949:2009 Quality Management System certification by the automotive industry.

Coming Soon

As the world's leading RF SOI company, Peregrine is committed to providing new product lines that meet the exacting requirements in a broad range of applications in aerospace and defense, broadband, industrial, mobile wireless device, test-and-measurement (T&M) equipment and wireless-infrastructure markets. Watch for some of our upcoming products.

Core Chip This X-band device will revolutionize Synthetic Aperture Radar. A single chip that uses monolithic microwave integrated circuit (MMIC) design techniques controlled through a standard digital interface, this product delivers the fine resolution and degree of control critical for radar applications.

Going Green Starts on the Inside

RoHS-compliant Commercial Packaging Options

12L 3×3 QFN

 $3.0 \times 3.0 \times 0.75$

16L 3×3 QFN

 $30 \times 30 \times 075$

32L 5×5 QFN

 $5.0 \times 5.0 \times 0.9$

10L 2×2 QFN 2.0 × 2.0 × 0.45

12L 2×2 QFN8L MSOP2.0 × 2.0 × 0.603.0 × 3.0 × 1.1

24L 4×4 QFN

 $4.0 \times 4.0 \times 0.9$

6L DFN 3.0 × 3.0 × 0.9

24L 4×4 LGA 4.0 × 4.0 × 0.9

29L 4×4 LGA 4.0 × 4.0 × 0.9

20L 4×4 LGA 4.0 × 4.0 × 0.9

20L 4×4 QFN 4.0 × 4.0 × 0.9

32L 6×6 QFN 6.0 × 6.0 × 0.9

48L 7×7 QFN 7.0 × 7.0 × 0.9

All dimensions are listed in millimeters (width × length × height) and are approximate. See product datasheets for exact dimensions.

Design and Application Support

Designing for tomorrow's challenging RF applications requires high-performance products and outstanding technical support. From our engineering excellence to streamlined manufacturing and technical sales and applications support, Peregrine Semiconductor is committed to providing a complete product solution. Choose among our comprehensive library of datasheets, application notes, tutorials, reference designs and other engineering resources, all developed to help get your design to market on time.

Online Support System – support.psemi.com

Visit our website to find the technical resources you need.

Sales Offices

The Americas

Peregrine Semiconductor Corporation 9380 Carroll Park Drive San Diego, CA USA 92121 Phone: +1.858.731.9400 Fax: +1.858.731.9499 E-mail: Sales@psemi.com

Europe

Peregrine Semiconductor, Europe Merlin House, Brunel Way, Theale, Berkshire RG7 4AB United Kingdom Phone: +44.118.902.6520 E-mail: Sales@psemi.com

Peregrine Semiconductor

Asia Pacific

Peregrine Semiconductor, China Room 811, Building 3 Lane 58 East Xinjian Road Shanghai, China 201199 Phone: +86.21.5836.8276 Fax: +86.21.5836.8550 E-mail: Sales_NorthChina@psemi.com Sales_SouthChina@psemi.com Peregrine Semiconductor, Korea #C-3004, Kolon Tripolis, 210 Geumgok-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-943 South Korea Phone: +82.31.728.3939 Fax: +82.31.728.3940 E-mail: Sales_Korea@psemi.com

Peregrine Semiconductor, Taiwan Phone: +886.970164578 Fax: +886.2.2822.5867 E-mail: Sales_Taiwan@psemi.com

A Murata Company

psemi.com

© 2015 Peregrine Semiconductor Corporation. All rights reserved. The Peregrine name, logo and UltraCMOS are registered trademarks, and HaRP is a trademark of Peregrine Semiconductor Corporation. All other trademarks are the property of their respective owners.

All information on these pages are subject to change without notice. Consult website for latest specifications. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.